zoukankan      html  css  js  c++  java
  • 2017 ACM/ICPC Asia Regional Shenyang Online:number number number hdu 6198【矩阵快速幂】

    Problem Description
    We define a sequence F:

     F0=0,F1=1;
     Fn=Fn1+Fn2 (n2).

    Give you an integer k, if a positive number n can be expressed by
    n=Fa1+Fa2+...+Fak where 0a1a2ak, this positive number is mjfgood. Otherwise, this positive number is mjfbad.
    Now, give you an integer k, you task is to find the minimal positive mjfbad number.
    The answer may be too large. Please print the answer modulo 998244353.
     
    Input
    There are about 500 test cases, end up with EOF.
    Each test case includes an integer k which is described above. (1k109)
     
    Output
    For each case, output the minimal mjfbad number mod 998244353.
     
    Sample Input
    1
     
    Sample Output
    4

    思路:找规律,当k=1时,n=F5-1=4。k=2,n=F7-1=12。k=3,n=F9-1=33。所以大胆推测n=F(2*k+3)-1;再用矩阵快速幂输出F(2n+3)-1。

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #include <vector>
     5 using namespace std;
     6 const int mod = 998244353;
     7 typedef long long LL;
     8 LL n;
     9 typedef vector<LL>vec;
    10 typedef vector<vec>mat;
    11 mat mul(mat &A, mat &B)
    12 {
    13     mat C(A.size(), vec(B[0].size()));///分配大小,A的行,B的列
    14     for (int i = 0; i<A.size(); i++) ///矩阵A的行
    15         for (int k = 0; k<B.size(); k++) ///矩阵B的行
    16             for (int j = 0; j<B[0].size(); j++) ///矩阵B的列
    17                 C[i][j] = (C[i][j] + A[i][k] * B[k][j] % mod + mod) % mod;
    18     return C;
    19 }
    20 ///计算A^n
    21 mat pow(mat A, LL n)
    22 {
    23     mat B(A.size(), vec(A.size()));///和矩阵A的大小相同
    24     for (int i = 0; i<A.size(); i++)
    25         B[i][i] = 1;
    26     while (n>0)
    27     {
    28         if (n & 1) B = mul(B, A);
    29         A = mul(A, A);
    30         n >>= 1;
    31     }
    32     return B;
    33 }
    34 void solve()
    35 {
    36     mat A(2, vec(2));///2*2的矩阵
    37     A[0][0] = 1;
    38     A[0][1] = 1;
    39     A[1][0] = 1;
    40     A[1][1] = 0;
    41     A = pow(A, n);
    42     printf("%d
    ", (A[1][0] % mod - 1 + mod) % mod);
    43 }
    44 int main()
    45 {
    46     while (~scanf("%lld", &n))
    47     {
    48         n = 2 * n + 3;
    49         solve();
    50     }
    51 }
  • 相关阅读:
    Django orm self 自关联表
    postgresql数据库导入导出
    celery在项目中的使用
    P3405 [USACO16DEC]Cities and States S 【map使用】
    P1030 求先序排列 【已知中序后序求先序】
    P1305 新二叉树 【寻找根节点进行先序遍历】
    P1229 遍历问题 【已知先序后序求中序种类】
    P1364 医院设置 【带权值的树的重心】
    P3884 [JLOI2009]二叉树问题 【离线tarjan或数的向上遍历】
    P1827 [USACO3.4]美国血统 American Heritage【树的遍历】
  • 原文地址:https://www.cnblogs.com/zxhyxiao/p/7577282.html
Copyright © 2011-2022 走看看