zoukankan      html  css  js  c++  java
  • 深入理解TCP协议及其源代码

    TCP是一种面向连接、可靠、基于字节流的传输协议,位于TCP/IP模型的传输层。

    • 面向连接:不同于UDP,TCP协议需要通信双方确定彼此已经建立连接后才可以进行数据传输;
    • 可靠:连接建立的双方在进行通信时,TCP保证了不会存在数据丢失,或是数据丢失后存在拯救丢失的措施;
    • 字节流:实际传输中,不论是何种数据,TCP都按照字节的方式传输,而非以数据包为单位。

    1.TCP建立连接的三次握手

      TCP是一个面向连接的协议,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接,所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发,整个流程如下图所示:

    (1)第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。

    (2)第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。

    (3)第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。

    简单来说,就是:

      1、建立连接时,客户端发送SYN包(SYN=i)到服务器,并进入到SYN-SEND状态,等待服务器确认;

      2、服务器收到SYN包,必须确认客户的SYN(ack=i+1),同时自己也发送一个SYN包(SYN=k),即SYN+ACK包,此时服务器进入SYN-RECV状态;

      3、客户端收到服务器的SYN+ACK包,向服务器发送确认报ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手,客户端与服务器开始传送数据。

    TCP状态转换图:

      CLOSED:起始点,在超时或者连接关闭时候进入此状态,这并不是一个真正的状态,而是这个状态图的假想起点和终点。

      LISTEN:服务器端等待连接的状态。服务器经过socket,bind,listen函数之后进入此状态,开始监听客户端发过来的连接请求。此称为应用程序被动打开(等到客户端连接请求)。

      SYN_SENT:第一次握手发生阶段,客户端发起连接。客户端调用connect,发送SYN给服务器端,然后进入SYN_SENT状态,等待服务器端确认(三次握手中的第二个报文)。如果服务器端不能连接,则直接进入CLOSED状态。

      SYN_RCVD:第二次握手发生阶段,跟3对应,这里是服务器端接收到了客户端的SYN,此时服务器由LISTEN进入SYN_RCVD状态,同时服务器端回应一个ACK,然后再发送一个SYN即SYN+ACK给客户端。状态图中还描绘了这样一种情况,当客户端在发送SYN的同时也收到服务器端的SYN请求,即两个同时发起连接请求,那么客户端就会从SYN_SENT转换到SYN_REVD状态。

      ESTABLISHED:第三次握手发生阶段,客户端接收到服务器端的ACK包(ACK,SYN)之后,也会发送一个ACK确认包,客户端进入ESTABLISHED状态,表明客户端这边已经准备好,但TCP需要两端都准备好才可以进行数据传输。服务器端收到客户端的ACK之后会从SYN_RCVD状态转移到ESTABLISHED状态,表明服务器端也准备好进行数据传输了。这样客户端和服务器端都是ESTABLISHED状态,就可以进行后面的数据传输了。所以ESTABLISHED也可以说是一个数据传送状态。

    2.内核源码分析

    客户端调用connect主动发起连接:

    /*
     *    Attempt to connect to a socket with the server address.  The address
     *    is in user space so we verify it is OK and move it to kernel space.
     *
     *    For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
     *    break bindings
     *
     *    NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
     *    other SEQPACKET protocols that take time to connect() as it doesn't
     *    include the -EINPROGRESS status for such sockets.
     */
    
    int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
    {
        struct socket *sock;
        struct sockaddr_storage address;
        int err, fput_needed;
    
        sock = sockfd_lookup_light(fd, &err, &fput_needed);
        if (!sock)
            goto out;
        //将地址对象从用户空间拷贝到内核空间
            err = move_addr_to_kernel(uservaddr, addrlen, &address);
        if (err < 0)
            goto out_put;
    
        err =
            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
        if (err)
            goto out_put;
    
        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
                     sock->file->f_flags);
    out_put:
        fput_light(sock->file, fput_needed);
    out:
        return err;
    }
    
    SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
            int, addrlen)
    {
        return __sys_connect(fd, uservaddr, addrlen);
    }

    该函数根据文件描述符找到指定的socket对象,将地址信息从用户空间拷贝到内核空间,调用指定类型套接字的connect函数。

    对应流式套接字的connect函数是inet_stream_connect:

    int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
                int addr_len, int flags)
    {
        int err;
     
        lock_sock(sock->sk);
        err = __inet_stream_connect(sock, uaddr, addr_len, flags);
        release_sock(sock->sk);
        return err;
    }
     
    /*
     *    Connect to a remote host. There is regrettably still a little
     *    TCP 'magic' in here.
     */
     
    //1. 检查socket地址长度和使用的协议族。
    //2. 检查socket的状态,必须是SS_UNCONNECTED或SS_CONNECTING。
    //3. 调用tcp_v4_connect()来发送SYN包。
    //4. 等待后续握手的完成:
    int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
                  int addr_len, int flags)
    {
        struct sock *sk = sock->sk;
        int err;
        long timeo;
     
        if (addr_len < sizeof(uaddr->sa_family))
            return -EINVAL;
    
        if (uaddr->sa_family == AF_UNSPEC) {
            err = sk->sk_prot->disconnect(sk, flags);
            sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
            goto out;
        }
     
        switch (sock->state) {
        default:
            err = -EINVAL;
            goto out;
        case SS_CONNECTED:
            //已经是连接状态
            err = -EISCONN;
            goto out;
        case SS_CONNECTING:
            //正在连接
            err = -EALREADY;
            /* Fall out of switch with err, set for this state */
            break;
        case SS_UNCONNECTED:
            err = -EISCONN;
            if (sk->sk_state != TCP_CLOSE)
                goto out;
     
            //对于流式套接字,sock->ops为 inet_stream_ops -->         inet_stream_connect  --> tcp_prot  --> tcp_v4_connect
     
            //对于数据报套接字,sock->ops为 inet_dgram_ops --> inet_dgram_connect           --> udp_prot  --> ip4_datagram_connect
            err = sk->sk_prot->connect(sk, uaddr, addr_len);
            if (err < 0)
                goto out;
    
            sock->state = SS_CONNECTING;
     
            /* Just entered SS_CONNECTING state; the only
             * difference is that return value in non-blocking
             * case is EINPROGRESS, rather than EALREADY.
             */
            err = -EINPROGRESS;
            break;
        }
     
        //获取阻塞时间timeo。如果socket是非阻塞的,则timeo是0
        //connect()的超时时间为sk->sk_sndtimeo,在sock_init_data()中初始化为MAX_SCHEDULE_TIMEOUT,表示无限等待,可以通过SO_SNDTIMEO选项来修改
        timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
     
        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
            int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
                    tcp_sk(sk)->fastopen_req &&
                    tcp_sk(sk)->fastopen_req->data ? 1 : 0;
     
            /* Error code is set above */
    
        if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
                goto out;
     
            err = sock_intr_errno(timeo);
            //进程收到信号,如果err为-ERESTARTSYS,接下来库函数会重新调用connect()
            if (signal_pending(current))
                goto out;
        }
     
        /* Connection was closed by RST, timeout, ICMP error
         * or another process disconnected us.
         */
        if (sk->sk_state == TCP_CLOSE)
            goto sock_error;
     
        /* sk->sk_err may be not zero now, if RECVERR was ordered by user
         * and error was received after socket entered established state.
         * Hence, it is handled normally after connect() return successfully.
         */
     
        //更新socket状态为连接已建立
        sock->state = SS_CONNECTED;
     
        //清除错误码
        err = 0;
    out:
        return err;
     
    sock_error:
        err = sock_error(sk) ? : -ECONNABORTED;
        sock->state = SS_UNCONNECTED;
     
        //如果使用的是TCP,则sk_prot为tcp_prot,disconnect为tcp_disconnect()
        if (sk->sk_prot->disconnect(sk, flags))
            //如果失败
            sock->state = SS_DISCONNECTING;
        goto out;
    }

    该函数首先检查socket地址长度和使用的协议族,检查socket的状态,必须是SS_UNCONNECTED或SS_CONNECTING,调用实现协议的connect函数,对于流式套接字,实现协议是tcp,调用的是tcp_v4_connect(),对于阻塞调用,等待后续握手的完成;对于非阻塞调用,则直接返回 -EINPROGRESS。

    tcp_v4_connect的源代码:

    /* This will initiate an outgoing connection. */
     
    int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
    {
        struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
        struct inet_sock *inet = inet_sk(sk);
        struct tcp_sock *tp = tcp_sk(sk);
        __be16 orig_sport, orig_dport;
        __be32 daddr, nexthop;
        struct flowi4 *fl4;
        struct rtable *rt;
        int err;
        struct ip_options_rcu *inet_opt;
     
        if (addr_len < sizeof(struct sockaddr_in))
            return -EINVAL;
     
        if (usin->sin_family != AF_INET)
            return -EAFNOSUPPORT;
     
        nexthop = daddr = usin->sin_addr.s_addr;
        inet_opt = rcu_dereference_protected(inet->inet_opt,
                             lockdep_sock_is_held(sk));
     
        //将下一跳地址和目的地址的临时变量都暂时设为用户提交的地址。 
        if (inet_opt && inet_opt->opt.srr) {
            if (!daddr)
                return -EINVAL;
            nexthop = inet_opt->opt.faddr;
        }
     
        //源端口
        orig_sport = inet->inet_sport;
     
        //目的端口
        orig_dport = usin->sin_port;
        
        fl4 = &inet->cork.fl.u.ip4;
     
        //如果使用了来源地址路由,选择一个合适的下一跳地址。 
        rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
                      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
                      IPPROTO_TCP,
                      orig_sport, orig_dport, sk);
        if (IS_ERR(rt)) {
            err = PTR_ERR(rt);
            if (err == -ENETUNREACH)
                IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
            return err;
        }
     
        if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
            ip_rt_put(rt);
            return -ENETUNREACH;
        }
     
        //进行路由查找,并校验返回的路由的类型,TCP是不被允许使用多播和广播的
        if (!inet_opt || !inet_opt->opt.srr)
            daddr = fl4->daddr;
     
        //更新目的地址临时变量——使用路由查找后返回的值
        if (!inet->inet_saddr)
            inet->inet_saddr = fl4->saddr;
        sk_rcv_saddr_set(sk, inet->inet_saddr);
        
        //如果还没有设置源地址,和本地发送地址,则使用路由中返回的值
        if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
            /* Reset inherited state */
            tp->rx_opt.ts_recent       = 0;
            tp->rx_opt.ts_recent_stamp = 0;
            if (likely(!tp->repair))
                tp->write_seq       = 0;
        }
     
        if (tcp_death_row.sysctl_tw_recycle &&
            !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
            tcp_fetch_timewait_stamp(sk, &rt->dst);
     
        //保存目的地址及端口
        inet->inet_dport = usin->sin_port;
        sk_daddr_set(sk, daddr);
     
        inet_csk(sk)->icsk_ext_hdr_len = 0;
        if (inet_opt)
            inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
     
        //设置最小允许的mss值 536
        tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
     
        /* Socket identity is still unknown (sport may be zero).
         * However we set state to SYN-SENT and not releasing socket
         * lock select source port, enter ourselves into the hash tables and
         * complete initialization after this.
         */
     
        //套接字状态被置为 TCP_SYN_SENT, 
        tcp_set_state(sk, TCP_SYN_SENT);
        err = inet_hash_connect(&tcp_death_row, sk);
        if (err)
            goto failure;
     
        sk_set_txhash(sk);
        
        //动态选择一个本地端口,并加入 hash 表,与bind(2)选择端口类似
        rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
                       inet->inet_sport, inet->inet_dport, sk);
     
                       
        if (IS_ERR(rt)) {
            err = PTR_ERR(rt);
            rt = NULL;
            goto failure;
        }
        /* OK, now commit destination to socket.  */
     
        sk->sk_gso_type = SKB_GSO_TCPV4;
        sk_setup_caps(sk, &rt->dst);
    
        if (!tp->write_seq && likely(!tp->repair))
    
            tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
                                   inet->inet_daddr,
                                   inet->inet_sport,
                                   usin->sin_port);
    
        inet->inet_id = tp->write_seq ^ jiffies;
        
        //函数用来根据 sk 中的信息,构建一个完成的 syn 报文,并将它发送出去。
        err = tcp_connect(sk);
     
        rt = NULL;
        if (err)
            goto failure;
     
        return 0;
     
    failure:
        /*
         * This unhashes the socket and releases the local port,
         * if necessary.
         */
        tcp_set_state(sk, TCP_CLOSE);
        ip_rt_put(rt);
        sk->sk_route_caps = 0;
        inet->inet_dport = 0;
        return err;
    }

    该函数完成了路由查找,得到下一跳地址,并更新socket对象的下一跳地址,将socket对象的状态设置为TCP_SYN_SENT,如果没设置序号初值,则选定一个随机初值, 调用函数tcp_connect完成报文构建和发送。

    tcp_connect的源码:

    /* Build a SYN and send it off. */
    int tcp_connect(struct sock *sk)
    {
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *buff;
        int err;
     
        //初始化传输控制块中与连接相关的成员
        tcp_connect_init(sk);
     
        if (unlikely(tp->repair)) {
            tcp_finish_connect(sk, NULL);
            return 0;
        }
        //分配skbuff   --> 为SYN段分配报文并进行初始化
        buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
        if (unlikely(!buff))
            return -ENOBUFS;
     
        //构建syn报文
        
        //在函数tcp_v4_connect中write_seq已经被初始化随机值
        tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
        
        tp->retrans_stamp = tcp_time_stamp;
     
        //将报文添加到发送队列上
        tcp_connect_queue_skb(sk, buff);
     
        //显式拥塞通告 ---> 
        //路由器在出现拥塞时通知TCP。当TCP段传递时,路由器使用IP首部中的2位来记录拥塞,当TCP段到达后,
        //接收方知道报文段是否在某个位置经历过拥塞。然而,需要了解拥塞发生情况的是发送方,而非接收方。因
        //此,接收方使用下一个ACK通知发送方有拥塞发生,然后,发送方做出响应,缩小自己的拥塞窗口。
        tcp_ecn_send_syn(sk, buff);
     
        /* Send off SYN; include data in Fast Open. */
        err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
     
              //构造tcp头和ip头并发送
              tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
        if (err == -ECONNREFUSED)
            return err;
     
        /* We change tp->snd_nxt after the tcp_transmit_skb() call
         * in order to make this packet get counted in tcpOutSegs.
         */
        tp->snd_nxt = tp->write_seq;
        tp->pushed_seq = tp->write_seq;
        TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
     
        /* Timer for repeating the SYN until an answer. */
     
        //启动重传定时器
        inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
                      inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
        return 0;
    }

    该函数完成:

    1 初始化套接字跟连接相关的字段

    2 申请sk_buff空间

    3 将sk_buff初始化为syn报文,实质是操作tcp_skb_cb,在初始化TCP头的时候会用到

    4 调用tcp_connect_queue_skb()函数将报文sk_buff添加到发送队列sk->sk_write_queue

    5 调用tcp_transmit_skb()函数构造tcp头,然后交给网络层。

    6 初始化重传定时器

    tcp_connect_queue_skb()函数的原理主要是移动sk_buff的data指针,然后填充TCP头。再然后将报文交给网络层,将报文发出。

    这样,三次握手中的第一次握手在客户端的层面完成,报文到达服务端,由服务端处理完毕后,第一次握手完成,客户端socket状态变为TCP_SYN_SENT。

    tcp_v4_rcv()源码:

    /*
         *    From tcp_input.c
         */
        
    
        int tcp_v4_rcv(struct sk_buff *skb)
        {
            struct net *net = dev_net(skb->dev);
            int sdif = inet_sdif(skb);
            const struct iphdr *iph;
            const struct tcphdr *th;
            bool refcounted;
            struct sock *sk;
            int ret;
        
    
            if (skb->pkt_type != PACKET_HOST)
                goto discard_it;
        
    
            /* Count it even if it's bad */
            __TCP_INC_STATS(net, TCP_MIB_INSEGS);
        
    
            if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
                goto discard_it;
        
    
            th = (const struct tcphdr *)skb->data;
        
    
            if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
                goto bad_packet;
            if (!pskb_may_pull(skb, th->doff * 4))
                goto discard_it;
        
    
            /* An explanation is required here, I think.
             * Packet length and doff are validated by header prediction,
             * provided case of th->doff==0 is eliminated.
             * So, we defer the checks. */
        
    
            if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
                goto csum_error;
        
    
            th = (const struct tcphdr *)skb->data;
            iph = ip_hdr(skb);
        lookup:
            sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
                           th->dest, sdif, &refcounted);
            if (!sk)
                goto no_tcp_socket;
        
    
        process:
            if (sk->sk_state == TCP_TIME_WAIT)
                goto do_time_wait;
        
    
            if (sk->sk_state == TCP_NEW_SYN_RECV) {
                struct request_sock *req = inet_reqsk(sk);
                bool req_stolen = false;
                struct sock *nsk;
        
    
                sk = req->rsk_listener;
                if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
                    sk_drops_add(sk, skb);
                    reqsk_put(req);
                    goto discard_it;
                }
                if (tcp_checksum_complete(skb)) {
                    reqsk_put(req);
                    goto csum_error;
                }
                if (unlikely(sk->sk_state != TCP_LISTEN)) {
                    inet_csk_reqsk_queue_drop_and_put(sk, req);
                    goto lookup;
                }
                /* We own a reference on the listener, increase it again
                 * as we might lose it too soon.
                 */
                sock_hold(sk);
                refcounted = true;
                nsk = NULL;
                if (!tcp_filter(sk, skb)) {
                    th = (const struct tcphdr *)skb->data;
                    iph = ip_hdr(skb);
                    tcp_v4_fill_cb(skb, iph, th);
                    nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
                }
                if (!nsk) {
                    reqsk_put(req);
                    if (req_stolen) {
                        /* Another cpu got exclusive access to req
                         * and created a full blown socket.
                         * Try to feed this packet to this socket
                         * instead of discarding it.
                         */
                        tcp_v4_restore_cb(skb);
                        sock_put(sk);
                        goto lookup;
                    }
                    goto discard_and_relse;
                }
                if (nsk == sk) {
                    reqsk_put(req);
                    tcp_v4_restore_cb(skb);
                } else if (tcp_child_process(sk, nsk, skb)) {
                    tcp_v4_send_reset(nsk, skb);
                    goto discard_and_relse;
                } else {
                    sock_put(sk);
                    return 0;
                }
            }
            if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
                __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
                goto discard_and_relse;
            }
        
    
            if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
                goto discard_and_relse;
        
    
            if (tcp_v4_inbound_md5_hash(sk, skb))
                goto discard_and_relse;
        
    
            nf_reset(skb);
        
    
            if (tcp_filter(sk, skb))
                goto discard_and_relse;
            th = (const struct tcphdr *)skb->data;
            iph = ip_hdr(skb);
            tcp_v4_fill_cb(skb, iph, th);
        
    
            skb->dev = NULL;
        
    
            if (sk->sk_state == TCP_LISTEN) {
                ret = tcp_v4_do_rcv(sk, skb);
                goto put_and_return;
            }
        
    
            sk_incoming_cpu_update(sk);
        
    
            bh_lock_sock_nested(sk);
            tcp_segs_in(tcp_sk(sk), skb);
            ret = 0;
            if (!sock_owned_by_user(sk)) {
                ret = tcp_v4_do_rcv(sk, skb);
            } else if (tcp_add_backlog(sk, skb)) {
                goto discard_and_relse;
            }
            bh_unlock_sock(sk);
        
    
        put_and_return:
            if (refcounted)
                sock_put(sk);
        
    
            return ret;
        
    
        no_tcp_socket:
            if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
                goto discard_it;
        
    
            tcp_v4_fill_cb(skb, iph, th);
        
    
            if (tcp_checksum_complete(skb)) {
        csum_error:
                __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
        bad_packet:
                __TCP_INC_STATS(net, TCP_MIB_INERRS);
            } else {
                tcp_v4_send_reset(NULL, skb);
            }
        
    
        discard_it:
            /* Discard frame. */
            kfree_skb(skb);
            return 0;
        
    
        discard_and_relse:
            sk_drops_add(sk, skb);
            if (refcounted)
                sock_put(sk);
            goto discard_it;
        
    
        do_time_wait:
            if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
                inet_twsk_put(inet_twsk(sk));
                goto discard_it;
            }
        
    
            tcp_v4_fill_cb(skb, iph, th);
        
    
            if (tcp_checksum_complete(skb)) {
                inet_twsk_put(inet_twsk(sk));
                goto csum_error;
            }
            switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
            case TCP_TW_SYN: {
                struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
                                    &tcp_hashinfo, skb,
                                    __tcp_hdrlen(th),
                                    iph->saddr, th->source,
                                    iph->daddr, th->dest,
                                    inet_iif(skb),
                                    sdif);
                if (sk2) {
                    inet_twsk_deschedule_put(inet_twsk(sk));
                    sk = sk2;
                    tcp_v4_restore_cb(skb);
                    refcounted = false;
                    goto process;
                }
            }
                /* to ACK */
                /* fall through */
            case TCP_TW_ACK:
                tcp_v4_timewait_ack(sk, skb);
                break;
            case TCP_TW_RST:
                tcp_v4_send_reset(sk, skb);
                inet_twsk_deschedule_put(inet_twsk(sk));
                goto discard_it;
            case TCP_TW_SUCCESS:;
            }
            goto discard_it;
        }

    该函数主要工作就是根据tcp头部信息查到处理报文的socket对象,然后检查socket状态做不同处理,我们这里是监听状态TCP_LISTEN,直接调用函数tcp_v4_do_rcv():

    /* The socket must have it's spinlock held when we get
         * here, unless it is a TCP_LISTEN socket.
         *
         * We have a potential double-lock case here, so even when
         * doing backlog processing we use the BH locking scheme.
         * This is because we cannot sleep with the original spinlock
         * held.
         */
        int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
        {
            struct sock *rsk;
        
    
            if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
                struct dst_entry *dst = sk->sk_rx_dst;
        
    
                sock_rps_save_rxhash(sk, skb);
                sk_mark_napi_id(sk, skb);
                if (dst) {
                    if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
                        !dst->ops->check(dst, 0)) {
                        dst_release(dst);
                        sk->sk_rx_dst = NULL;
                    }
                }
                tcp_rcv_established(sk, skb);
                return 0;
            }
        
    
            if (tcp_checksum_complete(skb))
                goto csum_err;
        
    
            if (sk->sk_state == TCP_LISTEN) {
                struct sock *nsk = tcp_v4_cookie_check(sk, skb);
        
    
                if (!nsk)
                    goto discard;
                if (nsk != sk) {
                    if (tcp_child_process(sk, nsk, skb)) {
                        rsk = nsk;
                        goto reset;
                    }
                    return 0;
                }
            } else
                sock_rps_save_rxhash(sk, skb);
        
    
            if (tcp_rcv_state_process(sk, skb)) {
                rsk = sk;
                goto reset;
            }
            return 0;
        
    
        reset:
            tcp_v4_send_reset(rsk, skb);
        discard:
            kfree_skb(skb);
            /* Be careful here. If this function gets more complicated and
             * gcc suffers from register pressure on the x86, sk (in %ebx)
             * might be destroyed here. This current version compiles correctly,
             * but you have been warned.
             */
            return 0;
        
    
        csum_err:
            TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
            TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
            goto discard;
        }
        EXPORT_SYMBOL(tcp_v4_do_rcv);

    首先函数检查当前是否处于半连接状态,并调用tcp_v4_hnd_req检查报文的状态字段,再针对报文类型调用不同函数进行处理,若是SYN报文,则调用tcp_rcv_state_process函数,进入到下一阶段,客户端收到服务端的SYN+ACK,并发送ACK。

    接着就是调用tcp_rcv_state_process():

    /*
         *    This function implements the receiving procedure of RFC 793 for
         *    all states except ESTABLISHED and TIME_WAIT.
         *    It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
         *    address independent.
         */
        
    
        int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
        {
            struct tcp_sock *tp = tcp_sk(sk);
            struct inet_connection_sock *icsk = inet_csk(sk);
            const struct tcphdr *th = tcp_hdr(skb);
            struct request_sock *req;
            int queued = 0;
            bool acceptable;
        
    
            switch (sk->sk_state) {
            case TCP_CLOSE:
                goto discard;
        
    
            case TCP_LISTEN:
                if (th->ack)
                    return 1;
        
    
                if (th->rst)
                    goto discard;
        
    
                if (th->syn) {
                    if (th->fin)
                        goto discard;
                    /* It is possible that we process SYN packets from backlog,
                     * so we need to make sure to disable BH and RCU right there.
                     */
                    rcu_read_lock();
                    local_bh_disable();
                    acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
                    local_bh_enable();
                    rcu_read_unlock();
        
    
                    if (!acceptable)
                        return 1;
                    consume_skb(skb);
                    return 0;
                }
                goto discard;
        
    
            case TCP_SYN_SENT:
                tp->rx_opt.saw_tstamp = 0;
                tcp_mstamp_refresh(tp);
                queued = tcp_rcv_synsent_state_process(sk, skb, th);
                if (queued >= 0)
                    return queued;
        
    
                /* Do step6 onward by hand. */
                tcp_urg(sk, skb, th);
                __kfree_skb(skb);
                tcp_data_snd_check(sk);
                return 0;
            }
        
    
            tcp_mstamp_refresh(tp);
            tp->rx_opt.saw_tstamp = 0;
            req = tp->fastopen_rsk;
            if (req) {
                bool req_stolen;
        
    
                WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
                    sk->sk_state != TCP_FIN_WAIT1);
        
    
                if (!tcp_check_req(sk, skb, req, true, &req_stolen))
                    goto discard;
            }
        
    
            if (!th->ack && !th->rst && !th->syn)
                goto discard;
        
    
            if (!tcp_validate_incoming(sk, skb, th, 0))
                return 0;
        
    
            /* step 5: check the ACK field */
            acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
                              FLAG_UPDATE_TS_RECENT |
                              FLAG_NO_CHALLENGE_ACK) > 0;
        
    
            if (!acceptable) {
                if (sk->sk_state == TCP_SYN_RECV)
                    return 1;    /* send one RST */
                tcp_send_challenge_ack(sk, skb);
                goto discard;
            }
            switch (sk->sk_state) {
            case TCP_SYN_RECV:
                tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
                if (!tp->srtt_us)
                    tcp_synack_rtt_meas(sk, req);
        
    
                /* Once we leave TCP_SYN_RECV, we no longer need req
                 * so release it.
                 */
                if (req) {
                    inet_csk(sk)->icsk_retransmits = 0;
                    reqsk_fastopen_remove(sk, req, false);
                    /* Re-arm the timer because data may have been sent out.
                     * This is similar to the regular data transmission case
                     * when new data has just been ack'ed.
                     *
                     * (TFO) - we could try to be more aggressive and
                     * retransmitting any data sooner based on when they
                     * are sent out.
                     */
                    tcp_rearm_rto(sk);
                } else {
                    tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
                    tp->copied_seq = tp->rcv_nxt;
                }
                smp_mb();
                tcp_set_state(sk, TCP_ESTABLISHED);
                sk->sk_state_change(sk);
        
    
                /* Note, that this wakeup is only for marginal crossed SYN case.
                 * Passively open sockets are not waked up, because
                 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
                 */
                if (sk->sk_socket)
                    sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
        
    
                tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
                tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
        
    
                if (tp->rx_opt.tstamp_ok)
                    tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
        
    
                if (!inet_csk(sk)->icsk_ca_ops->cong_control)
                    tcp_update_pacing_rate(sk);
        
    
                /* Prevent spurious tcp_cwnd_restart() on first data packet */
                tp->lsndtime = tcp_jiffies32;
        
    
                tcp_initialize_rcv_mss(sk);
                tcp_fast_path_on(tp);
                break;
        
    
            case TCP_FIN_WAIT1: {
                int tmo;
        
    
                /* If we enter the TCP_FIN_WAIT1 state and we are a
                 * Fast Open socket and this is the first acceptable
                 * ACK we have received, this would have acknowledged
                 * our SYNACK so stop the SYNACK timer.
                 */
                if (req) {
                    /* We no longer need the request sock. */
                    reqsk_fastopen_remove(sk, req, false);
                    tcp_rearm_rto(sk);
                }
                if (tp->snd_una != tp->write_seq)
                    break;
        
    
                tcp_set_state(sk, TCP_FIN_WAIT2);
                sk->sk_shutdown |= SEND_SHUTDOWN;
        
    
                sk_dst_confirm(sk);
        
    
                if (!sock_flag(sk, SOCK_DEAD)) {
                    /* Wake up lingering close() */
                    sk->sk_state_change(sk);
                    break;
                }
        
    
                if (tp->linger2 < 0) {
                    tcp_done(sk);
                    NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
                    return 1;
                }
                if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
                    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
                    /* Receive out of order FIN after close() */
                    if (tp->syn_fastopen && th->fin)
                        tcp_fastopen_active_disable(sk);
                    tcp_done(sk);
                    NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
                    return 1;
                }
        
    
                tmo = tcp_fin_time(sk);
                if (tmo > TCP_TIMEWAIT_LEN) {
                    inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
                } else if (th->fin || sock_owned_by_user(sk)) {
                    /* Bad case. We could lose such FIN otherwise.
                     * It is not a big problem, but it looks confusing
                     * and not so rare event. We still can lose it now,
                     * if it spins in bh_lock_sock(), but it is really
                     * marginal case.
                     */
                    inet_csk_reset_keepalive_timer(sk, tmo);
                } else {
                    tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
                    goto discard;
                }
                break;
            }
        
    
            case TCP_CLOSING:
                if (tp->snd_una == tp->write_seq) {
                    tcp_time_wait(sk, TCP_TIME_WAIT, 0);
                    goto discard;
                }
                break;
        
    
            case TCP_LAST_ACK:
                if (tp->snd_una == tp->write_seq) {
                    tcp_update_metrics(sk);
                    tcp_done(sk);
                    goto discard;
                }
                break;
            }
        
    
            /* step 6: check the URG bit */
            tcp_urg(sk, skb, th);
        
    
            /* step 7: process the segment text */
            switch (sk->sk_state) {
            case TCP_CLOSE_WAIT:
            case TCP_CLOSING:
            case TCP_LAST_ACK:
                if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
                    break;
                /* fall through */
            case TCP_FIN_WAIT1:
            case TCP_FIN_WAIT2:
                /* RFC 793 says to queue data in these states,
                 * RFC 1122 says we MUST send a reset.
                 * BSD 4.4 also does reset.
                 */
                if (sk->sk_shutdown & RCV_SHUTDOWN) {
                    if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
                        after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
                        tcp_reset(sk);
                        return 1;
                    }
                }
                /* Fall through */
            case TCP_ESTABLISHED:
                tcp_data_queue(sk, skb);
                queued = 1;
                break;
            }
        
    
            /* tcp_data could move socket to TIME-WAIT */
            if (sk->sk_state != TCP_CLOSE) {
                tcp_data_snd_check(sk);
                tcp_ack_snd_check(sk);
            }
        
    
            if (!queued) {
        discard:
                tcp_drop(sk, skb);
            }
            return 0;
        }
        EXPORT_SYMBOL(tcp_rcv_state_process);
  • 相关阅读:
    Oracle普通表->分区表转换(9亿数据量)
    RHEL6.4 + Oracle 11g DG测试环境快速搭建参考
    java 获取时间戳的三种方式
    java sm3加密算法
    java byte数组与String互转
    Java的多线程
    最大重叠点
    23. 客户默认选项(Default Customer Options)
    Android Studio 1.3RC版 build加速
    查看linux机器是32位还是64位的方法
  • 原文地址:https://www.cnblogs.com/zxy1122/p/12102140.html
Copyright © 2011-2022 走看看