zoukankan      html  css  js  c++  java
  • UESTC

    In the Fibonacci integer sequence, F0=0,F1=1,F0=0,F1=1, and Fn=Fn−1+Fn−2Fn=Fn−1+Fn−2 for n≥2n≥2. For example, the first ten terms of the Fibonacci sequence are:

    0,1,1,2,3,5,8,13,21,34,⋯0,1,1,2,3,5,8,13,21,34,⋯
    An alternative formula for the Fibonacci sequence is
    这里写图片描述
    Given an integer nn, your goal is to compute the last 44 digits of FnFn.
    Input
    The input test file will contain multiple test cases. Each test case consists of a single line containing nn (where 0≤n≤1,000,000,0000≤n≤1,000,000,000).

    The end-of-file is denoted by a single line containing the number -1.

    Output
    For each test case, print the last four digits of FnFn. If the last four digits of FnFn are all zeros, print 0; otherwise, omit any leading zeros (i.e., print FnFn mod 1000010000).

    Sample Input
    0
    9
    999999999
    1000000000
    -1
    Sample Output
    0
    34
    626
    6875
    Hint
    As a reminder, matrix multiplication is associative, and the product of two 2×22×2 matrices is given by
    这里写图片描述
    Also, note that raising any 2×22×2 matrix to the 0th power gives the identity matrix:
    这里写图片描述
    The data used in this problem is unofficial data prepared by 695375900. So any mistake here does not imply mistake in the offcial judge data.

    例:
    a^11=a^(2^0+2^1+2^3)
    普通的快速幂(a^b%c)
    int quick_pow(int a,int b,int c)
    {
        int ans=1;
        while(b)
        {
            if(b&1)
                ans=ans*a%c;
            a=a*a%c
            b>>=1;
        }
        return ans;
    }
    
    #include<stdio.h>
    #include<string.h>
    struct mat
    {
        int a[2][2];
    };
    mat I=
    {
        1,0,
        0,1
    };
    mat matrax(mat q,mat p)
    {
        mat e;
        memset(e.a,0,sizeof(e.a));
        for(int i=0; i<2; i++)
            for(int j=0; j<2; j++)
            {
                for(int k=0; k<2; k++)
                {
                    e.a[i][j]=(e.a[i][j]+q.a[i][k]*p.a[k][j])%10000;
                }
            }
        return e;
    }
    mat quicklymod(mat b,int n)
    {
        mat ans;
        memset(ans.a,0,sizeof(ans.a));
        ans=I;
        while(n)
        {
            if(n&1)
                ans=matrax(b,ans);
            b=matrax(b,b);
            n>>=1;
        }
        return ans;
    }
    int main()
    {
        int n;
        while(~scanf("%d",&n)&&n!=-1)
        {
            mat b;
            b.a[0][0]=1,b.a[0][1]=1,b.a[1][0]=1,b.a[1][1]=0;
            if(n<=2)
            {
                if(n==0) printf("0
    ");
                else if(n==1) printf("1
    ");
                else if(n==2) printf("1
    ");
            }
            else
            {
                b=quicklymod(b,n);
                printf("%d
    ",b.a[0][1]);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    一款好用的绘图软件gnuplot
    剑指offer--18.从尾到头打印链表
    剑指offer--17.第一个只出现一次的字符
    剑指offer--16.数组中重复的数字
    剑指offer--15.把字符串转换成整数
    剑指offer--14.求1+2+3+...+n
    剑指offer--13.二进制中1的个数
    剑指offer--12.不用加减乘除做加法
    剑指offer--11.数组中出现次数超过一半的数字
    剑指offer--10.最小的K个数
  • 原文地址:https://www.cnblogs.com/zxy160/p/7215120.html
Copyright © 2011-2022 走看看