zoukankan      html  css  js  c++  java
  • dp 01背包,完全背包,多重背包 模板

    转自http://www.cppblog.com/tanky-woo/archive/2010/07/31/121803.html
    首先说下动态规划,动态规划这东西就和递归一样,只能找局部关系,若想全部列出来,是很难的,比如汉诺塔。你可以说先把除最后一层的其他所有层都移动到2,再把最后一层移动到3,最后再把其余的从2移动到3,这是一个直观的关系,但是想列举出来是很难的,也许当层数n=3时还可以模拟下,再大一些就不可能了,所以,诸如递归,动态规划之类的,不能细想,只能找局部关系。

    1.汉诺塔图片

    (引至杭电课件:DP最关键的就是状态,在DP时用到的数组时,也就是存储的每个状态的最优值,也就是记忆化搜索)

    要了解背包,首先得清楚动态规划:

    动态规划算法可分解成从先到后的4个步骤:

    1. 描述一个最优解的结构;

    2. 递归地定义最优解的值;

    3. 以“自底向上”的方式计算最优解的值;

    4. 从已计算的信息中构建出最优解的路径。

    其中步骤1~3是动态规划求解问题的基础。如果题目只要求最优解的值,则步骤4可以省略。

    背包的基本模型就是给你一个容量为V的背包 在一定的限制条件下放进最多(最少?)价值的东西

    当前状态→ 以前状态

    看了dd大牛的《背包九讲》(点击下载),迷糊中带着一丝清醒,这里我也总结下01背包,完全背包,多重背包这三者的使用和区别,部分会引用dd大牛的《背包九讲》,如果有错,欢迎指出。

    ((www.wutianqi.com)留言即可)

    首先我们把三种情况放在一起来看:

    01背包(ZeroOnePack):

    有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

    完全背包(CompletePack):

    有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

    多重背包(MultiplePack):

    有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

    比较三个题目,会发现不同点在于每种背包的数量,01背包是每种只有一件,完全背包是每种无限件,而多重背包是每种有限件。


    01背包

    01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

    这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

    用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

    f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

    把这个过程理解下:在前i件物品放进容量v的背包时,

    它有两种情况:
    第一种是第i件不放进去,这时所得价值为:f[i-1][v]

    第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]
    (第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)

    最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。

    (这是基础,要理解!)

    这里是用二位数组存储的,可以把空间优化,用一位数组存储。

    用f[0..v]表示,f[v]表示把前i件物品放入容量为v的背包里得到的价值。把i从1~n(n件)循环后,最后f[v]表示所求最大值。
    *这里f[v]就相当于二位数组的f[i][v]。那么,如何得到f[i-1][v]和f[i-1][v-c[i]]+w[i]?(重点!思考)
    首先要知道,我们是通过i从1到n的循环来依次表示前i件物品存入的状态。即:for i=1..N
    现在思考如何能在是f[v]表示当前状态是容量为v的背包所得价值,而又使f[v]和f[v-c[i]]+w[i]标签前一状态的价值?

    逆序

    这就是关键!

    1for i=1..N//物品的个数
    2   for v=V..0//包内剩余的(放之前)体积
    3        f[v]=max{f[v],f[v-c[i]]+w[i]};
    4

    分析上面的代码:当内循环是逆序时,就可以保证后一个f[v]和f[v-c[i]]+w[i]是前一状态的!
    这里给大家一组测试数据:

    测试数据:
    10,3
    3,4
    4,5
    5,6

    这个图表画得很好,借此来分析:

    C[v]从物品i=1开始,循环到物品3,期间,每次逆序得到容量v在前i件物品时可以得到的最大值。(请在草稿纸上自己画一画)

    这里以一道题目来具体看看:
    题目:(http://acm.hdu.edu.cn/showproblem.php?pid=2602)

    代码二维数组
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    int p[1005],v[1005];
    int dp[1005][1005];
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            int i,j;
            memset(p,0,sizeof(p));
            memset(v,0,sizeof(v));
            memset(dp,0,sizeof(dp));
            int n,v1;
            scanf("%d%d",&n,&v1);
            for(i=1; i<=n; i++)
            {
                scanf("%d",&p[i]);
            }
            for(j=1; j<=n; j++)
            {
                scanf("%d",&v[j]);
            }
            for(i=1; i<=n; i++)
            {
                for(j=0; j<=v1; j++)
                {
                    if(j<v[i])
                        dp[i][j]=dp[i-1][j];
                    else
                        dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+p[i]);
                }
            }
            printf("%d
    ",dp[n][v1]);
        }
        return 0;
    }
    代码 一维
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    int v1[1005];
    int w[1005];
    int f[1005];
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            memset(v1,0,sizeof(v1));
            memset(w,0,sizeof(w));
            memset(f,0,sizeof(f));
            int i,j;
            int n,v;
            scanf("%d%d",&n,&v);
            for(i=1; i<=n; i++)
            {
                scanf("%d",&v1[i]);
            }
            for(j=1; j<=n; j++)
            {
                scanf("%d",&w[j]);
            }
            for(i=1; i<=n; i++)
            {
                for(j=v; j>=w[i]; j--)
                {
    //                if(j<w[i])
    //                    f[j]=f[j];
    //                else
                        f[j]=max(f[j],f[j-w[i]]+v1[i]);
                }
            }
            printf("%d
    ",f[v]);
        }
        return 0;
    }

    分析

    具体根据上面的解释以及我给出的代码分析。这题很基础,看懂上面的知识应该就会做了


    因为三个背包加在一起太长,我都看不下去了,换个地方,
    完全背包:http://blog.csdn.net/zxy160/article/details/54410854
    多重背包:http://blog.csdn.net/zxy160/article/details/54410915

    "No regrets."
  • 相关阅读:
    noi 1944 吃糖果
    noi 6049 买书
    noi 2985 数字组合
    noi 2728 摘花生
    noi 2718 移动路线
    noi 4977 怪盗基德的滑翔翼
    noi 8780 拦截导弹
    noi 1996 登山
    NOI 动态规划题集
    图的色数
  • 原文地址:https://www.cnblogs.com/zxy160/p/7215176.html
Copyright © 2011-2022 走看看