zoukankan      html  css  js  c++  java
  • CF352B Jeff and Periods 模拟

    One day Jeff got hold of an integer sequence a1, a2, ..., an of length n. The boy immediately decided to analyze the sequence. For that, he needs to find all values of x, for which these conditions hold:

    • x occurs in sequence a.
    • Consider all positions of numbers x in the sequence a (such i, that ai = x). These numbers, sorted in the increasing order, must form an arithmetic progression.

    Help Jeff, find all x that meet the problem conditions.

    Input

    The first line contains integer n (1 ≤ n ≤ 105). The next line contains integers a1, a2, ..., an (1 ≤ ai ≤ 105). The numbers are separated by spaces.

    Output

    In the first line print integer t — the number of valid x. On each of the next t lines print two integers x and px, where x is current suitable value, px is the common difference between numbers in the progression (if x occurs exactly once in the sequence, px must equal 0). Print the pairs in the order of increasing x.

    Examples
    Input
    Copy
    1
    2
    Output
    Copy
    1
    2 0
    Input
    Copy
    8
    1 2 1 3 1 2 1 5
    Output
    Copy
    4
    1 2
    2 4
    3 0
    5 0
    Note

    In the first test 2 occurs exactly once in the sequence, ergo p2 = 0.

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<map>
    #include<set>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<ctime>
    #include<deque>
    #include<stack>
    #include<functional>
    #include<sstream>
    //#include<cctype>
    //#pragma GCC optimize(2)
    using namespace std;
    #define maxn 200005
    #define inf 0x7fffffff
    //#define INF 1e18
    #define rdint(x) scanf("%d",&x)
    #define rdllt(x) scanf("%lld",&x)
    #define rdult(x) scanf("%lu",&x)
    #define rdlf(x) scanf("%lf",&x)
    #define rdstr(x) scanf("%s",x)
    typedef long long  ll;
    typedef unsigned long long ull;
    typedef unsigned int U;
    #define ms(x) memset((x),0,sizeof(x))
    const long long int mod = 1e9 + 7;
    #define Mod 1000000000
    #define sq(x) (x)*(x)
    #define eps 1e-3
    typedef pair<int, int> pii;
    #define pi acos(-1.0)
    //const int N = 1005;
    #define REP(i,n) for(int i=0;i<(n);i++)
    typedef pair<int, int> pii;
    inline ll rd() {
        ll x = 0;
        char c = getchar();
        bool f = false;
        while (!isdigit(c)) {
            if (c == '-') f = true;
            c = getchar();
        }
        while (isdigit(c)) {
            x = (x << 1) + (x << 3) + (c ^ 48);
            c = getchar();
        }
        return f ? -x : x;
    }
    
    ll gcd(ll a, ll b) {
        return b == 0 ? a : gcd(b, a%b);
    }
    ll sqr(ll x) { return x * x; }
    
    /*ll ans;
    ll exgcd(ll a, ll b, ll &x, ll &y) {
        if (!b) {
            x = 1; y = 0; return a;
        }
        ans = exgcd(b, a%b, x, y);
        ll t = x; x = y; y = t - a / b * y;
        return ans;
    }
    */
    int n;
    int a[maxn];
    struct node {
        int st;// 端点
        int dx;// 差值
        int cnt;// 计数
        int fg;
    }td[maxn];
    map<int, int>mp;
    
    int main() {
        //ios::sync_with_stdio(0);
        cin >> n;
        for (int i = 1; i <= n; i++) {
            cin >> a[i];
            td[a[i]].cnt++;
            if (td[a[i]].cnt == 1) {
                td[a[i]].st = i; td[a[i]].fg = 1;
            }
            else {
                if (td[a[i]].cnt == 2) {
                    td[a[i]].dx = i - td[a[i]].st;
                    td[a[i]].st = i;
                }
                else {
                    if (td[a[i]].dx != i - td[a[i]].st) {
                        td[a[i]].fg = 0;
                    }
                    else {
                        td[a[i]].dx = i - td[a[i]].st;
                        td[a[i]].st = i;
                    }
                }
            }
        }
        sort(a + 1, a + 1 + n);
        int tot = unique(a + 1, a + 1 + n) - a - 1;
        bool fg = 0; int ct = 0;
        for (int i = 1; i <= tot; i++) {
            if (td[a[i]].fg == 1) {
                ct++;
            }
        }
         if (ct == 0) {
            cout << 0 << endl; return 0;
        }
         cout << ct << endl;
         
        for (int i = 1; i <= tot; i++) {
        //	cout << a[i] << ' ' << td[a[i]].fg << ' ' << td[a[i]].dx << endl;
            if (td[a[i]].cnt == 1) {
                cout << a[i] << ' ' << 0 << endl;
            }
            else if (td[a[i]].cnt > 1 && td[a[i]].fg == 1) {
                cout << a[i] << ' ' << td[a[i]].dx << endl;
            }
        }
        return 0;
    }
    
    EPFL - Fighting
  • 相关阅读:
    CodeForces Round #288 Div.2
    POJ 3660 Cow Contest【传递闭包】
    ZOJ 3321 Circle【并查集】
    CF 286(div 2) B Mr. Kitayuta's Colorful Graph【传递闭包】
    CF 287(div 2) B Amr and Pins
    HDU 2122 Ice_cream’s world III【最小生成树】
    HDU 1233 还是畅通工程【最小生成树】
    奶牛接力 矩阵乘法
    家谱 并差集
    昂贵的聘礼 最短路 dijkstra
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/10200353.html
Copyright © 2011-2022 走看看