题目描述
已知有两个字串A,BA,BA,B及一组字串变换的规则(至多666个规则):
A1A_1A1 ->B1 B_1B1
A2A_2A2 -> B2B_2B2
规则的含义为:在 AAA中的子串 A1A_1A1 可以变换为B1 B_1B1,A2A_2A2 可以变换为 B2B_2B2 …。
例如:AAA='abcdabcdabcd'BBB='xyzxyzxyz'
变换规则为:
‘abcabcabc’->‘xuxuxu’‘ududud’->‘yyy’‘yyy’->‘yzyzyz’
则此时,AAA可以经过一系列的变换变为BBB,其变换的过程为:
‘abcdabcdabcd’->‘xudxudxud’->‘xyxyxy’->‘xyzxyzxyz’
共进行了333次变换,使得AAA变换为BBB。
输入输出格式
输入格式:输入格式如下:
AAA BBB
A1A_1A1 B1B_1B1
A2A_2A2 B2B_2B2 |-> 变换规则
... ... /
所有字符串长度的上限为202020。
输出格式:输出至屏幕。格式如下:
若在101010步(包含101010步)以内能将AAA变换为BBB,则输出最少的变换步数;否则输出"NO ANSWER!"
输入输出样例
输入样例#1:
复制
abcd xyz abc xu ud y y yz
输出样例#1: 复制
3
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 100005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-4 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ struct node { string str; int stp; }; string a, b; string orign[maxn]; string trans[maxn]; int n, ans; map<string, int>mp; string tran(const string &str, int i, int j) { string ans = ""; if (i + orign[j].length() > str.length())return ans; for (int k = 0; k < orign[j].length(); k++) { if (str[i + k] != orign[j][k])return ans; } ans = str.substr(0, i); ans += trans[j]; ans += str.substr(i + orign[j].length()); return ans; } void bfs() { queue<node>q; node s; s.str = a; s.stp = 0; q.push(s); while (!q.empty()) { node u = q.front(); q.pop(); string tmp; if (mp.count(u.str))continue; if (u.str == b) { ans = u.stp; break; } mp[u.str] = 1; for (int i = 0; i < u.str.length(); i++) { for (int j = 0; j < n; j++) { tmp = tran(u.str, i, j); if (tmp != "") { node v; v.str = tmp; v.stp = u.stp + 1; q.push(v); } } } } if (ans > 10 || ans == 0)cout << "NO ANSWER!" << endl; else cout << ans << endl; } int main() { ios::sync_with_stdio(0); cin >> a >> b; while (cin >> orign[n] >> trans[n])n++; bfs(); return 0; }