题目描述
windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,
在A和B之间,包括A和B,总共有多少个windy数?
输入输出格式
输入格式:包含两个整数,A B。
输出格式:一个整数
输入输出样例
说明
100%的数据,满足 1 <= A <= B <= 2000000000 。
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<time.h> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 100005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) #define mclr(x,a) memset((x),a,sizeof(x)) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 100000007; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-5 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll dp[20][20], ans; int a[maxn]; int len; ll l, r; ll dfs(int pos, int pre, int lead, int limit) { if (pos > len)return 1; if (!limit&&dp[pos][pre] != -1)return dp[pos][pre]; ll res = 0; int up = limit ? a[len - pos + 1] : 9; for (int i = 0; i <= up; i++) { if (abs(i - pre) < 2)continue; if (lead&&i == 0)res += dfs(pos + 1, -2, 1, limit&&i == up); else res += dfs(pos + 1, i, 0, limit&i == up); } if (!limit && !lead)dp[pos][pre] = res; return res; } ll sol(ll x) { len = 0; while (x)a[++len] = x % 10, x /= 10; mclr(dp, -1); return dfs(1, -2, 1, 1); } int main() { // ios::sync_with_stdio(0); rdllt(l); rdllt(r); cout << (ll)sol(r) - (ll)sol(l - 1) << endl; return 0; }