zoukankan      html  css  js  c++  java
  • Machine learning 第8周编程作业 K-means and PCA

    1.findClosestCentroids

    function idx = findClosestCentroids(X, centroids)
    %FINDCLOSESTCENTROIDS computes the centroid memberships for every example
    %   idx = FINDCLOSESTCENTROIDS (X, centroids) returns the closest centroids
    %   in idx for a dataset X where each row is a single example. idx = m x 1 
    %   vector of centroid assignments (i.e. each entry in range [1..K])
    %
    
    % Set K
    K = size(centroids, 1);
    
    % You need to return the following variables correctly.
    idx = zeros(size(X,1), 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Go over every example, find its closest centroid, and store
    %               the index inside idx at the appropriate location.
    %               Concretely, idx(i) should contain the index of the centroid
    %               closest to example i. Hence, it should be a value in the 
    %               range 1..K
    %
    % Note: You can use a for-loop over the examples to compute this.
    %
    
    for i=1:size(X,1),
      for j=1:K,
        dis(j)=sum( (centroids(j,:)-X(i,:)).^2, 2 );
      endfor
      [t,idx(i)]=min(dis);
    endfor
    
    
    
    
    
    % =============================================================
    
    end
    

      

    2.computerCentroids

    function centroids = computeCentroids(X, idx, K)
    %COMPUTECENTROIDS returns the new centroids by computing the means of the 
    %data points assigned to each centroid.
    %   centroids = COMPUTECENTROIDS(X, idx, K) returns the new centroids by 
    %   computing the means of the data points assigned to each centroid. It is
    %   given a dataset X where each row is a single data point, a vector
    %   idx of centroid assignments (i.e. each entry in range [1..K]) for each
    %   example, and K, the number of centroids. You should return a matrix
    %   centroids, where each row of centroids is the mean of the data points
    %   assigned to it.
    %
    
    % Useful variables
    [m n] = size(X);
    
    % You need to return the following variables correctly.
    centroids = zeros(K, n);
    
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Go over every centroid and compute mean of all points that
    %               belong to it. Concretely, the row vector centroids(i, :)
    %               should contain the mean of the data points assigned to
    %               centroid i.
    %
    % Note: You can use a for-loop over the centroids to compute this.
    %
    
    
    
    for i=1:K,
      ALL=0;
      cnt=sum(idx==i);
      temp=find(idx==i);
      for j=1:numel(temp),
        ALL=ALL+X(temp(j),:);
      endfor
      centroids(i,:)=ALL/cnt;
    endfor
    
    
    
    
    % =============================================================
    
    
    end
    

      

    3.pca

    function [U, S] = pca(X)
    %PCA Run principal component analysis on the dataset X
    %   [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
    %   Returns the eigenvectors U, the eigenvalues (on diagonal) in S
    %
    
    % Useful values
    [m, n] = size(X);
    
    % You need to return the following variables correctly.
    U = zeros(n);
    S = zeros(n);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: You should first compute the covariance matrix. Then, you
    %               should use the "svd" function to compute the eigenvectors
    %               and eigenvalues of the covariance matrix. 
    %
    % Note: When computing the covariance matrix, remember to divide by m (the
    %       number of examples).
    %
    
    
    Sigma=(X'*X)./m;
    [U,S,V]=svd(Sigma);
    
    
    
    
    % =========================================================================
    
    end
    

      

    4.projectData

    function Z = projectData(X, U, K)
    %PROJECTDATA Computes the reduced data representation when projecting only 
    %on to the top k eigenvectors
    %   Z = projectData(X, U, K) computes the projection of 
    %   the normalized inputs X into the reduced dimensional space spanned by
    %   the first K columns of U. It returns the projected examples in Z.
    %
    
    % You need to return the following variables correctly.
    Z = zeros(size(X, 1), K);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the projection of the data using only the top K 
    %               eigenvectors in U (first K columns). 
    %               For the i-th example X(i,:), the projection on to the k-th 
    %               eigenvector is given as follows:
    %                    x = X(i, :)';
    %                    projection_k = x' * U(:, k);
    %
    
    U_reduce=U(:,1:K);
    Z=X*U_reduce;
    
    
    % =============================================================
    
    end
    

      

    5.recoverData

    function X_rec = recoverData(Z, U, K)
    %RECOVERDATA Recovers an approximation of the original data when using the 
    %projected data
    %   X_rec = RECOVERDATA(Z, U, K) recovers an approximation the 
    %   original data that has been reduced to K dimensions. It returns the
    %   approximate reconstruction in X_rec.
    %
    
    % You need to return the following variables correctly.
    X_rec = zeros(size(Z, 1), size(U, 1));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the approximation of the data by projecting back
    %               onto the original space using the top K eigenvectors in U.
    %
    %               For the i-th example Z(i,:), the (approximate)
    %               recovered data for dimension j is given as follows:
    %                    v = Z(i, :)';
    %                    recovered_j = v' * U(j, 1:K)';
    %
    %               Notice that U(j, 1:K) is a row vector.
    %               
    X_rec=Z*U(:,1:K)';
    
    
    % =============================================================
    
    end
    

      

  • 相关阅读:
    NetScaler ‘Counters’ Grab-Bag!
    NetScaler + Wireshark = A Perfect Combination!
    What’s That NetScaler Reset Packet?
    Give NetScaler a “Tune-Up”
    51Nod 1080 两个数的平方和(数论,经典题)
    51Nod 1289 大鱼吃小鱼(模拟,经典好题)
    1082 与7无关的数(思维题,巨坑)
    51Nod 1003 阶乘后面0的数量(数学,思维题)
    2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)
    后缀数组(一堆干货)
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/10794352.html
Copyright © 2011-2022 走看看