Try guessing the statement from this picture:
You are given a non-negative integer d
. You have to find two non-negative real numbers a and b such that a+b=d and a⋅b=d
.
Input
The first line contains t
(1≤t≤103
) — the number of test cases.
Each test case contains one integer d
(0≤d
.
Output
For each test print one line.
If there is an answer for the i
-th test, print "Y", and then the numbers a and b
.
If there is no answer for the i
-th test, print "N".
Your answer will be considered correct if |(a+b)−a⋅b|≤10−6
and |(a+b)−d
.
Example
Input
Copy
7 69 0 1 4 5 999 1000
Output
Copy
Y 67.985071301 1.014928699 Y 0.000000000 0.000000000 N Y 2.000000000 2.000000000 Y 3.618033989 1.381966011 Y 997.998996990 1.001003010 Y 998.998997995 1.001002005
题意:求两个实数 a,b 满足 a+b==d&&a*b==d;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize("O3") using namespace std; #define maxn 400005 #define inf 0x3f3f3f3f #define INF 9999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } int T; int d; int main() { //ios::sync_with_stdio(0); rdint(T); while (T--) { rdint(d); if (d*d < 4 * d)cout << "N" << endl; else { double a = 1.0*(d + sqrt(d*d - 4 * d)) / (2.0); double b = 1.0*d - a; cout << "Y" << ' '; printf("%.9lf %.9lf ", 1.0*a, 1.0*b); } } return 0; }