zoukankan      html  css  js  c++  java
  • CF385C Bear and Prime Numbers 数学

    题意翻译

    给你一串数列a.对于一个质数p,定义函数f(p)=a数列中能被p整除的数的个数.给出m组询问l,r,询问[l,r]区间内所有素数p的f(p)之和.

    题目描述

    Recently, the bear started studying data structures and faced the following problem.

    You are given a sequence of integers x1,x2,...,xn x_{1},x_{2},...,x_{n} x1,x2,...,xn of length n n n and m m m queries, each of them is characterized by two integers li,ri l_{i},r_{i} li,ri . Let's introduce f(p) f(p) f(p) to represent the number of such indexes k k k , that xk x_{k} xk is divisible by p p p . The answer to the query li,ri l_{i},r_{i} li,ri is the sum: , where S(li,ri) S(l_{i},r_{i}) S(li​,ri​) is a set of prime numbers from segment [li,ri] [l_{i},r_{i}] [li​,ri​] (both borders are included in the segment).

    Help the bear cope with the problem.

    输入输出格式

    输入格式:

    The first line contains integer n n n (1<=n<=106) (1<=n<=10^{6}) (1<=n<=106) . The second line contains n n n integers x1,x2,...,xn x_{1},x_{2},...,x_{n} x1,x2,...,xn (2<=xi<=107) (2<=x_{i}<=10^{7}) (2<=xi<=107) . The numbers are not necessarily distinct.

    The third line contains integer m m m (1<=m<=50000) (1<=m<=50000) (1<=m<=50000) . Each of the following m m m lines contains a pair of space-separated integers, li l_{i} li and ri r_{i} ri (2<=li<=ri<=2⋅109) (2<=l_{i}<=r_{i}<=2·10^{9}) (2<=li<=ri<=2109) — the numbers that characterize the current query.

    输出格式:

    Print m m m integers — the answers to the queries on the order the queries appear in the input.

    输入输出样例

    输入样例#1: 复制
    6
    5 5 7 10 14 15
    3
    2 11
    3 12
    4 4
    
    输出样例#1: 复制
    9
    7
    0
    
    输入样例#2: 复制
    7
    2 3 5 7 11 4 8
    2
    8 10
    2 123
    
    输出样例#2: 复制
    0
    7
    

    首先可以线性筛筛出 1e7 里面所有的素数;
    对于每一个x[i] ,我们记录其次数,然后类似于埃筛的做法,对于每个素数,用 sum [ i ] 来累计有该素数因子的数的个数;
    最后用前缀和维护;
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<map>
    #include<set>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<ctime>
    #include<deque>
    #include<stack>
    #include<functional>
    #include<sstream>
    //#include<cctype>
    //#pragma GCC optimize("O3")
    using namespace std;
    #define maxn 10000005
    #define inf 0x3f3f3f3f
    #define INF 9999999999
    #define rdint(x) scanf("%d",&x)
    #define rdllt(x) scanf("%lld",&x)
    #define rdult(x) scanf("%lu",&x)
    #define rdlf(x) scanf("%lf",&x)
    #define rdstr(x) scanf("%s",x)
    typedef long long  ll;
    typedef unsigned long long ull;
    typedef unsigned int U;
    #define ms(x) memset((x),0,sizeof(x))
    const long long int mod = 1e9 + 7;
    #define Mod 1000000000
    #define sq(x) (x)*(x)
    #define eps 1e-3
    typedef pair<int, int> pii;
    #define pi acos(-1.0)
    const int N = 1005;
    #define REP(i,n) for(int i=0;i<(n);i++)
    typedef pair<int, int> pii;
    inline ll rd() {
    	ll x = 0;
    	char c = getchar();
    	bool f = false;
    	while (!isdigit(c)) {
    		if (c == '-') f = true;
    		c = getchar();
    	}
    	while (isdigit(c)) {
    		x = (x << 1) + (x << 3) + (c ^ 48);
    		c = getchar();
    	}
    	return f ? -x : x;
    }
    
    ll gcd(ll a, ll b) {
    	return b == 0 ? a : gcd(b, a%b);
    }
    ll sqr(ll x) { return x * x; }
    
    /*ll ans;
    ll exgcd(ll a, ll b, ll &x, ll &y) {
    	if (!b) {
    		x = 1; y = 0; return a;
    	}
    	ans = exgcd(b, a%b, x, y);
    	ll t = x; x = y; y = t - a / b * y;
    	return ans;
    }
    */
    
    
    
    ll qpow(ll a, ll b, ll c) {
    	ll ans = 1;
    	a = a % c;
    	while (b) {
    		if (b % 2)ans = ans * a%c;
    		b /= 2; a = a * a%c;
    	}
    	return ans;
    }
    
    int n;
    int x[maxn];
    int m;
    int cnt[maxn];
    int prime[maxn];
    int tot = 0;
    int sum[maxn];
    bool vis[maxn];
    
    void init() {
    	vis[1] = 1;
    	for (int i = 2; i < maxn; i++) {
    		if (!vis[i])prime[++tot] = i;
    		for (int j = 1; prime[j] * i < maxn; j++) {
    			vis[prime[j] * i] = 1;
    			if (i%prime[j] == 0)break;
    		}
    	}
    }
    
    
    int main()
    {
    	//ios::sync_with_stdio(0);
    	rdint(n);
    	for (int i = 1; i <= n; i++)rdint(x[i]), cnt[x[i]]++;
    	init();
    	for (int i = 1; i <= tot; i++) {
    		for (int j = 1; j*prime[i] < maxn; j++) {
    			sum[i] += cnt[j*prime[i]];
    		}
    	}
    	for (int i = 1; i <= tot; i++)sum[i] += sum[i - 1];
    	rdint(m);
    	while (m--) {
    		int l, r; rdint(l); rdint(r);
    		int pos1 = upper_bound(prime + 1, prime + 1 + tot, r) - prime - 1;
    		int pos2 = lower_bound(prime + 1, prime + 1 + tot, l) - prime - 1;
    //		cout << pos1 << ' ' << pos2 << endl;
    		cout << sum[pos1] - sum[pos2] << endl;
    	}
        return 0;
    }
    
    
    
    EPFL - Fighting
  • 相关阅读:
    .NET Core依赖注入集成Dynamic Proxy
    MediatR-进程内的消息通信框架
    03-EF Core笔记之查询数据
    02-EF Core笔记之保存数据
    01-EF Core笔记之创建模型
    EF Core 基础知识
    CQRS+ES项目解析-Equinox
    CQRS+ES项目解析-Diary.CQRS
    不要让事实妨碍好故事:Facebook精准广告产品与硅谷创业揭秘,4星奇书《混乱的猴子》
    会讲故事的前物理学家万维钢解读、推荐过的书24本,好书一半
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/9972287.html
Copyright © 2011-2022 走看看