zoukankan      html  css  js  c++  java
  • CF1245E:Hyakugoku and Ladders

    CF1245E:Hyakugoku and Ladders

    题意描述:

    • 给你一个(10*10)的矩阵,矩阵描述如下
      • 最开始的时候你在左下角,你的目标是到达左上角。
      • 你可以走路径或者爬梯子。
      • 路径的定义:
        • 如果当前在一行的最右边,你可以网上爬一格。
        • 如果在行内其他位置,你可以往旁边走。
      • 每一回合你都要掷一个六面的骰子,假设当前骰子的正面为(r)。如果到终点的距离小于(r),那么你将不能移动。否则你将移动(r)格,如果你最后移动到的位置有一个梯子,你可以选择爬上去或者不怕上去。
    • 你的目标是找到到达目的的回合的最小期望。

    思路:

    • 期望(dp)
    • 在二维上不是很方便,我们可以把二维看成一个一维数组。
    • (f(i))表示到(i)需要多少回合。如果没有梯子的限制,那么有状态转移方程:
      • (f(i)=frac{f(i-1)+f(i-2)+...+f(i-6)}{6}+1)
    • 那么有了梯子,我们只需要针对梯子转移过来的情况取(min)即可。
    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 15;
    int g[maxn][maxn];
    int nex[maxn][maxn];
    int a[maxn*maxn];
    double f[maxn*maxn];
    int main()
    {
        for(int i = 1; i <= 10; i++)
            for(int j = 1; j <= 10; j++)
                nex[i][j] = (i-1)*10 + (i&1 ? j : 11-j);
    
        for(int i = 1; i <= 10; i++)
            for(int j = 1, x; j <= 10; j++){
                scanf("%d", &x);
                a[nex[i][j]] = nex[i-x][j];
            }
    
        f[1] = 0;
        double sum = 0;
        for(int i = 2; i <= 6; i++)
            f[i] = (sum+6) / (i-1), sum += f[i];
    
        for(int i = 7; i <= 100; i++)
        {
            sum = 0;
            for(int r = 1; r <= 6; r++)
                sum = sum + min(f[i-r], f[a[i-r]]);
            f[i] = sum / 6.0 + 1;
        }
    
        printf("%.10f", f[100]);
        return 0;
    }
    
    
  • 相关阅读:
    第一天
    在代码层面描述软件的可测试性
    Datax环境搭建
    质量属性中六个常见的属性场景--以淘宝网为例
    01.《架构漫谈》阅读笔记
    我的第一个MVC程序(SpringMVC的环境搭建与实例运用)
    1.15学习进度总结
    1.14学习进度总结
    1.13学习进度总结
    1.12学习进度总结
  • 原文地址:https://www.cnblogs.com/zxytxdy/p/11823902.html
Copyright © 2011-2022 走看看