Children’s Queue
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 11117 Accepted Submission(s): 3577
Problem Description
There are many students in PHT School. One day, the headmaster whose name is PigHeader wanted all students stand in a line. He prescribed that girl can not be in single. In other words, either no girl in the queue or more than one girl stands side by side.
The case n=4 (n is the number of children) is like
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
Input
There are multiple cases in this problem and ended by the EOF. In each case, there is only one integer n means the number of children (1<=n<=1000)
Output
For each test case, there is only one integer means the number of queue satisfied the headmaster’s needs.
Sample Input
1 2 3
Sample Output
1 2 4
Author
SmallBeer (CML)
Source
长度为N的序列 F要么不出现 要么不单独出现 即MFM FMM FMF 的情况
一开始的时候想的是排列组合的方法
N个中有k个M,然后再将N-k个F拆开 插入 k+1个空格内的方案数。
不用想 这样的复杂度十分的高 先不谈时间复杂度
空间复杂度也得爆 要开C[1000][1000][70];
所以考虑递推
设A[i] 表示长度为i时的方案数
F[i] 表示末尾为F 且除去末尾的一串F后满足题目条件的方案数(即F,MF,MMFF也满足条件。除去末尾的一串F后为空,M,MM)
M[i]表示末尾为M满足条件的方案数
递推方程
A[i]=A[i-1]+F[i-1]
F[i]=M[i-1]+F[i-1]
M[i]=A[i-1];
要写高精度
#include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <ctime> #include <algorithm> #include <iostream> #include <sstream> #include <string> #define oo 0x13131313 #define B 10000 using namespace std; struct Bigint { int operator[](int index) const { return digit[index]; } int& operator[](int index) { return digit[index]; } int len; int digit[100]; }; Bigint A[1001],F[1001],M[1001]; void highadd(Bigint &c,Bigint &a,Bigint &b) { c.len=max(a.len,b.len)+1; int temp=0; for(int i=0;i<c.len;i++) { temp+=a[i]+b[i]; c[i]=temp%B; temp=temp/B; } if(c[c.len-1]==0) c.len--; } void YCL() { A[1].len=1,A[1][0]=1;F[1].len=1;F[1][0]=1;M[1].len=1,M[1][0]=1; for(int i=2;i<=1000;i++) { highadd(A[i],A[i-1],F[i-1]); highadd(F[i],M[i-1],F[i-1]); M[i]=A[i-1]; } } void output(int n) { printf("%d",A[n][A[n].len-1]); for(int i=A[n].len-2;i>=0;i--) printf("%04d",A[n][i]); printf(" "); } int main() { int n; YCL(); while(cin>>n) { output(n); } }
另外一种递推思路:
思路如下:
一个长度n的队列可以看成一个n - 1的队列再追加的1个小孩,这个小孩只可能是:
a.男孩,任何n - 1的合法队列追加1个男孩必然是合法的,情况数为f[n - 1];
b.女孩,在前n - 1的以女孩为末尾的队列后追加1位女孩也是合法的,我们可以转化为n - 2的队列中追加2位女孩;
一种情况是在n - 2的合法队列中追加2位女孩,情况数为f[n - 2];
但我们注意到本题的难点,可能前n - 2位以女孩为末尾的不合法队列(即单纯以1位女孩结尾),也可以追加2位女孩成为合法队列,而这种n - 2不合法队列必然是由n - 4合法队列+1男孩+1女孩的结构,即情况数为f[n - 4]。