zoukankan      html  css  js  c++  java
  • 【沙茶了+筛选保存最大质因数】【HDU2136】Largest prime factor

    Largest prime factor

    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6990    Accepted Submission(s): 2471


    Problem Description
    Everybody knows any number can be combined by the prime number.
    Now, your task is telling me what position of the largest prime factor.
    The position of prime 2 is 1, prime 3 is 2, and prime 5 is 3, etc.
    Specially, LPF(1) = 0.
     

    Input
    Each line will contain one integer n(0 < n < 1000000).
     

    Output
    Output the LPF(n).
     

    Sample Input
    1 2 3 4 5
     

    Sample Output
    0 1 2 1 3
     

    Author
    Wiskey
     

    Source
     

    Recommend
    威士忌   |   We have carefully selected several similar problems for you:  2133 2135 1215 2137 2134 
     


    我的思路 先打了素数表 再用二分查找去找最大的素数。。结果果断TLE了

    代码在此:

    #include<stdio.h>
    int YNprime[1000001];
    int prime[200000];
    int totprime=1;
    int getprime(int maxN)
    {
    	int i,j,k;
    	for(i=2;i<=maxN;i++)
    	if(YNprime[i]==0) 
    	   {
    	     prime[totprime++]=i;
    				for(j=2;i*j<=maxN;j++)
    				YNprime[i*j]=1;
    	   }
    	return 1;
    }
    int find(int s,int t,int N)
    {
    	int i;
    	int m=(s+t)/2;
    	if(s==t) return s;
    	if(prime[m]>N) return find(s,m,N);
        if(prime[m]<N) return find(m+1,t,N);
    	else return m;
    }
    int main()
    {
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    	int n,i,ans,k;
    	getprime(1000000);
    	while(scanf("%d",&n)!=EOF)
    	{
    		ans=0;
    		if(n==1) {printf("0
    ");continue;}
    		k=find(1,totprime-1,n);
    		for(i=k+10;i>=1;i--)
    		if(n%prime[i]==0)  {ans=i;break;}
    		printf("%d
    ",ans);
    	}	
    	return 0;
    }
    结果发现沙茶了

    筛选法的时候就能直接找最大的素数

    #include <cstdio>
    #include <iostream>
    
    using namespace std;
    
    #define Maxl 1000005
    int prime[Maxl];
    int rank[Maxl];
    int main()
    {
    	int k = 0, i, j;
    	for (i =2; i < Maxl; i++)
    	{
    		if (prime[i] == 0)
    		{
    			rank[i] = ++k;
    			for (j = i; j < Maxl; j += i)
    			{
    				prime[j] = i;
    			}
    		}
    	}
    	prime[1] = 0;
    	int n;
    	while(scanf("%d", &n) == 1)
    	{
    		if(n == 1)
    		{
    			printf("0
    ");
    			continue;
    			}
    		int k = prime[n];
    		printf("%d
    ", rank[k]);
    	}
    }



  • 相关阅读:
    实现IEnumberable接口和IEnumberator
    XAML-1
    Java基础00-Java概述1
    详解Lombok中的@Builder用法
    stream之map的用法
    stream之forEach的用法
    Java中map.getOrDefault()方法的使用
    BiPredicate的test()方法
    Function.identity()
    java 8 lamda Stream的Collectors.toMap 参数
  • 原文地址:https://www.cnblogs.com/zy691357966/p/5480486.html
Copyright © 2011-2022 走看看