zoukankan      html  css  js  c++  java
  • 【沙茶了+筛选保存最大质因数】【HDU2136】Largest prime factor

    Largest prime factor

    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6990    Accepted Submission(s): 2471


    Problem Description
    Everybody knows any number can be combined by the prime number.
    Now, your task is telling me what position of the largest prime factor.
    The position of prime 2 is 1, prime 3 is 2, and prime 5 is 3, etc.
    Specially, LPF(1) = 0.
     

    Input
    Each line will contain one integer n(0 < n < 1000000).
     

    Output
    Output the LPF(n).
     

    Sample Input
    1 2 3 4 5
     

    Sample Output
    0 1 2 1 3
     

    Author
    Wiskey
     

    Source
     

    Recommend
    威士忌   |   We have carefully selected several similar problems for you:  2133 2135 1215 2137 2134 
     


    我的思路 先打了素数表 再用二分查找去找最大的素数。。结果果断TLE了

    代码在此:

    #include<stdio.h>
    int YNprime[1000001];
    int prime[200000];
    int totprime=1;
    int getprime(int maxN)
    {
    	int i,j,k;
    	for(i=2;i<=maxN;i++)
    	if(YNprime[i]==0) 
    	   {
    	     prime[totprime++]=i;
    				for(j=2;i*j<=maxN;j++)
    				YNprime[i*j]=1;
    	   }
    	return 1;
    }
    int find(int s,int t,int N)
    {
    	int i;
    	int m=(s+t)/2;
    	if(s==t) return s;
    	if(prime[m]>N) return find(s,m,N);
        if(prime[m]<N) return find(m+1,t,N);
    	else return m;
    }
    int main()
    {
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    	int n,i,ans,k;
    	getprime(1000000);
    	while(scanf("%d",&n)!=EOF)
    	{
    		ans=0;
    		if(n==1) {printf("0
    ");continue;}
    		k=find(1,totprime-1,n);
    		for(i=k+10;i>=1;i--)
    		if(n%prime[i]==0)  {ans=i;break;}
    		printf("%d
    ",ans);
    	}	
    	return 0;
    }
    结果发现沙茶了

    筛选法的时候就能直接找最大的素数

    #include <cstdio>
    #include <iostream>
    
    using namespace std;
    
    #define Maxl 1000005
    int prime[Maxl];
    int rank[Maxl];
    int main()
    {
    	int k = 0, i, j;
    	for (i =2; i < Maxl; i++)
    	{
    		if (prime[i] == 0)
    		{
    			rank[i] = ++k;
    			for (j = i; j < Maxl; j += i)
    			{
    				prime[j] = i;
    			}
    		}
    	}
    	prime[1] = 0;
    	int n;
    	while(scanf("%d", &n) == 1)
    	{
    		if(n == 1)
    		{
    			printf("0
    ");
    			continue;
    			}
    		int k = prime[n];
    		printf("%d
    ", rank[k]);
    	}
    }



  • 相关阅读:
    ARC和MRC兼容和转换
    ARC下的内存管理
    嵌入式硬件系列一:处理器介绍
    嵌入式Linux GCC常用命令
    一. Linux 下的常用命令
    ARM学习中的必知基本常识
    二叉搜索树详解
    从入门到高手,嵌入式必会技能及学习步骤总结
    史上最全Linux目录结构说明
    排序系列之六:快速排序法进阶
  • 原文地址:https://www.cnblogs.com/zy691357966/p/5480486.html
Copyright © 2011-2022 走看看