zoukankan      html  css  js  c++  java
  • 动态规划 POJ3616 Milking Time

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    struct cow
    {
        int start;
        int endd;
        int price;
    };
    bool cmp(cow a,cow b)
    {
        return a.start<b.start;
    }
    int main()
    {
        int n,m,r;
        cow a[1005];
        cin>>n>>m>>r;
        int i,j;
        for(i=0;i<m;i++)
        {
            cin>>a[i].start>>a[i].endd>>a[i].price;
            a[i].endd+=r;
        }
        sort(a,a+m,cmp);
        int dp[1005]={0};
        for(i=0;i<m;i++)
        {
            dp[i]=a[i].price;
            for( j=0;j<i;j++)
            {
                if(a[i].start>=a[j].endd)
                {
                    dp[i]=max(dp[i],dp[j]+a[i].price);
                }
            }
        }
        cout<<*max_element(dp,dp+m)<<endl;
        return 0;
    }
    

      

    Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that she decides to schedule her next N (1 ≤ N ≤ 1,000,000) hours (conveniently labeled 0..N-1) so that she produces as much milk as possible.

    Farmer John has a list of M (1 ≤ M ≤ 1,000) possibly overlapping intervals in which he is available for milking. Each interval i has a starting hour (0 ≤ starting_houri ≤ N), an ending hour (starting_houri < ending_houri ≤ N), and a corresponding efficiency (1 ≤ efficiencyi ≤ 1,000,000) which indicates how many gallons of milk that he can get out of Bessie in that interval. Farmer John starts and stops milking at the beginning of the starting hour and ending hour, respectively. When being milked, Bessie must be milked through an entire interval.

    Even Bessie has her limitations, though. After being milked during any interval, she must rest R (1 ≤ R ≤ N) hours before she can start milking again. Given Farmer Johns list of intervals, determine the maximum amount of milk that Bessie can produce in the N hours.

    Input

    * Line 1: Three space-separated integers: NM, and R
    * Lines 2..M+1: Line i+1 describes FJ's ith milking interval withthree space-separated integers: starting_houri , ending_houri , and efficiencyi

    Output

    * Line 1: The maximum number of gallons of milk that Bessie can product in the N hours

    Sample Input

    12 4 2
    1 2 8
    10 12 19
    3 6 24
    7 10 31

    Sample Output

    43

    思路很简单,但感觉不是很好想,一开始想成背包问题了= =!

    言归正传,这题就先按开始时间排序,按最长上升序列O(n^2)的方法解,状态转移方程为dp[i]=max(dp[i],dp[j]+a[i].price),0<=j<i&&a[i].start>=a[j].end.

  • 相关阅读:
    BZOJ1051 [HAOI2006]受欢迎的牛 强连通分量缩点
    This blog has been cancelled for a long time
    欧拉定理、费马小定理及其拓展应用
    同余基础
    [LeetCode] 73. Set Matrix Zeroes
    [LeetCode] 42. Trapping Rain Water
    [LeetCode] 41. First Missing Positive
    [LeetCode] 71. Simplify Path
    [LeetCode] 148. Sort List
    [LeetCode] 239. Sliding Window Maximum
  • 原文地址:https://www.cnblogs.com/zyf3855923/p/8384238.html
Copyright © 2011-2022 走看看