题目描述
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.
Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
输入
* Line 1: Four space-separated integers: N, T, S, and E
* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i
* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i
输出
* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.
样例输入
2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
样例输出
10
所谓dfs序,就是把一棵树根据遍历的顺序压进一个序列里,这样我们就可以用线段树树状数组等各种骚操作搞它了。
我们dfs后 ,一棵树变成了一段序列。
然后对于每个节点,它的子树一定是一段连续的区间,那么问题就转化成了 给定一段区间,求区间不同数的个数加上剩余数不同数的个数,我们把序列延长一倍,就变成了统计两段连续区间内不同数的个数。树状数组瞎搞即可。
#include <bits/stdc++.h> #define maxn 200005 using namespace std; struct edges { int u,v,next; }edge[maxn]; int head[maxn]; int cnt=0; int n; void addedge(int u,int v) { edge[cnt].u=u; edge[cnt].v=v; edge[cnt].next=head[u]; head[u]=cnt++; } int sizes[maxn]; int in[maxn];//in表示遍历的时间戳 map<int,int> Mp; int out[maxn];//出来的时间戳,那么子树大小(包括本身)就是out[i]-in[i] bool vis[maxn]; int x=1; void dfs(int num)//dfs序 { for(int i=head[num];i!=-1;i=edge[i].next) { int v=edge[i].v; if(!vis[v]) { vis[v]=true; in[v]=x++; Mp[x-1]=v; dfs(v); out[v]=x; } } } int ans[maxn]; int tree[maxn]; int lowbit(int x) { return x&(-x); } void add(int pos,int val) { for(int i=pos;i<=n;i+=lowbit(i)) { tree[i]+=val; } } int sum(int x) { int res=0; for(int i=x;i>0;i-=lowbit(i)) { res+=tree[i]; } return res; } struct quer { int l,r,id; }query[maxn*2]; bool cmp(quer a,quer b) { return a.r<b.r; } int main() { int i; //freopen("in.txt","r",stdin); scanf("%d",&n); memset(head,-1,sizeof(head)); for(int i=2;i<=n;i++) { int v; scanf("%d",&v); addedge(i,v); addedge(v,i); } vis[1]=true; in[1]=x++; Mp[1]=1; dfs(1); out[1]=x; for(int i=1;i<=n;i++) { scanf("%d",&sizes[in[i]]); } for(int i=n+1;i<=2*n;i++) { sizes[i]=sizes[i-n]; } n*=2; int index=0; for(int i=2;i<=n/2;i++)//这一步是在枚举每一棵树的子树,把它加到询问里。 { int v=Mp[i]; int l=i; int r=out[v]-1; query[index].id=index; query[index].l=l; query[index++].r=r; query[index].id=index; query[index].l=r+1; int tmp=n/2-(r-l+1); query[index].r=query[index].l+tmp-1; index++; } sort(query,query+index,cmp); int cur=1; Mp.clear(); for(int i=0;i<index;i++)//树状数组离线搞 { for(int j=cur;j<=query[i].r;j++) { if(Mp[sizes[j]]!=0) { add(Mp[sizes[j]],-1); } add(j,1); Mp[sizes[j]]=j; } cur=query[i].r+1; ans[query[i].id]=sum(query[i].r)-sum(query[i].l-1); } int res=0; for(int i=0;i<index;i+=2) { res=max(res,ans[i]+ans[i+1]); } printf("%d ",res); return 0; }