zoukankan      html  css  js  c++  java
  • Exponial(拓展欧拉定理)

    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructingreally big numbers known to humankind, for instance:
    In this problem we look at their lesser-known love-child the exponial , which is an operation defined for all positive integers n as
    For example, exponial(1) = 1 and  which is already pretty big. Note that exponentiation is right-associative:  .
    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

    输入

    The input consists of two integers n (1 ≤ n ≤ 109 ) and m (1 ≤ m ≤ 109 ).

    输出

    Output a single integer, the value of exponial(n) mod m.

    样例输入

    2 42
    

    样例输出

    2

    拓展欧拉定理:
    则想到用其降幂,递归即可。
    但是要特判n=1,n=2,n=3,n=4,因为此时a^n可能小于phi(m)。
    #include <bits/stdc++.h>
    #define maxn 50005
    using namespace std;
    typedef long long ll;
    ll prime[maxn];
    bool vis[maxn];
    int cnt;
    void getprime()
    {
        for(int i=2;i<maxn;i++)
        {
            if(!vis[i])
            {
                prime[cnt++]=i;
            }
            for(int j=0;j<cnt&&prime[j]*i<maxn;j++)
            {
                vis[i*prime[j]]=1;
                if(i%prime[j]==0) break;
            }
        }
    }
    ll phi(ll n)
    {
        ll res=n;
        for(int i=0;i<cnt;i++)
        {
            if(n%prime[i]==0) res=res/prime[i]*(prime[i]-1);
            while(n%prime[i]==0) n/=prime[i];
        }
        if(n>1) res=res/n*(n-1);
        return res;
    }
    ll qpow(ll k,ll n,ll mod)
    {
        ll res=1;
        while(n)
        {
            if(n&1) res=res*k%mod;
            k=k*k%mod;
            n>>=1;
        }
        return res;
    }
    ll cal(ll n,ll m)
    {
        if(m==1) return 0;
        if(n==1) return 1ll;
        if(n==2) return 2ll%m;
        if(n==3) return 9ll%m;
        if(n==4) return 262144ll%m;
        ll tmp=phi(m);
        return qpow(n,cal((n-1),tmp)+tmp,m);
    }
    int main()
    {
        ll n,m;
        getprime();
        scanf("%lld%lld",&n,&m);
        ll ans=cal(n,m);
        printf("%lld
    ",ans);
        return 0;
    }
    

      

     
  • 相关阅读:
    如何进入docker 使用root用户的方式
    阿里云服务搭建nginx并配置
    阿里云容器部署Redis集群
    Redis运维利器 -- RedisManager
    远程连接-使用SSH密钥对远程登录阿里云云服务器
    第1课:SQL注入原理深度解析
    数据库设计三大范式
    linux指令大全(归类整理)
    linux目录结构
    linux-创建/使用快照/克隆(类似windows中备份还原)
  • 原文地址:https://www.cnblogs.com/zyf3855923/p/9747986.html
Copyright © 2011-2022 走看看