zoukankan      html  css  js  c++  java
  • Exponial(拓展欧拉定理)

    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructingreally big numbers known to humankind, for instance:
    In this problem we look at their lesser-known love-child the exponial , which is an operation defined for all positive integers n as
    For example, exponial(1) = 1 and  which is already pretty big. Note that exponentiation is right-associative:  .
    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

    输入

    The input consists of two integers n (1 ≤ n ≤ 109 ) and m (1 ≤ m ≤ 109 ).

    输出

    Output a single integer, the value of exponial(n) mod m.

    样例输入

    2 42
    

    样例输出

    2

    拓展欧拉定理:
    则想到用其降幂,递归即可。
    但是要特判n=1,n=2,n=3,n=4,因为此时a^n可能小于phi(m)。
    #include <bits/stdc++.h>
    #define maxn 50005
    using namespace std;
    typedef long long ll;
    ll prime[maxn];
    bool vis[maxn];
    int cnt;
    void getprime()
    {
        for(int i=2;i<maxn;i++)
        {
            if(!vis[i])
            {
                prime[cnt++]=i;
            }
            for(int j=0;j<cnt&&prime[j]*i<maxn;j++)
            {
                vis[i*prime[j]]=1;
                if(i%prime[j]==0) break;
            }
        }
    }
    ll phi(ll n)
    {
        ll res=n;
        for(int i=0;i<cnt;i++)
        {
            if(n%prime[i]==0) res=res/prime[i]*(prime[i]-1);
            while(n%prime[i]==0) n/=prime[i];
        }
        if(n>1) res=res/n*(n-1);
        return res;
    }
    ll qpow(ll k,ll n,ll mod)
    {
        ll res=1;
        while(n)
        {
            if(n&1) res=res*k%mod;
            k=k*k%mod;
            n>>=1;
        }
        return res;
    }
    ll cal(ll n,ll m)
    {
        if(m==1) return 0;
        if(n==1) return 1ll;
        if(n==2) return 2ll%m;
        if(n==3) return 9ll%m;
        if(n==4) return 262144ll%m;
        ll tmp=phi(m);
        return qpow(n,cal((n-1),tmp)+tmp,m);
    }
    int main()
    {
        ll n,m;
        getprime();
        scanf("%lld%lld",&n,&m);
        ll ans=cal(n,m);
        printf("%lld
    ",ans);
        return 0;
    }
    

      

     
  • 相关阅读:
    poj 3468 A Simple Problem with Integers 线段树区间更新
    poj 2096 概率dp
    JSP页面的基本结构 及声明变量
    怎样制作一个横版格斗过关游戏 Cocos2d-x 2.0.4
    块状元素与内联元素的差别
    ZOJ 3526 Weekend Party
    linux下javadoc生成文件出现中文乱码
    Centos6.0 通过devtoolset-2工具安装gcc 4.8
    fre7 offonline for firefox
    Aix Lamp openssh bash
  • 原文地址:https://www.cnblogs.com/zyf3855923/p/9747986.html
Copyright © 2011-2022 走看看