zoukankan      html  css  js  c++  java
  • Exponial(拓展欧拉定理)

    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructingreally big numbers known to humankind, for instance:
    In this problem we look at their lesser-known love-child the exponial , which is an operation defined for all positive integers n as
    For example, exponial(1) = 1 and  which is already pretty big. Note that exponentiation is right-associative:  .
    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

    输入

    The input consists of two integers n (1 ≤ n ≤ 109 ) and m (1 ≤ m ≤ 109 ).

    输出

    Output a single integer, the value of exponial(n) mod m.

    样例输入

    2 42
    

    样例输出

    2

    拓展欧拉定理:
    则想到用其降幂,递归即可。
    但是要特判n=1,n=2,n=3,n=4,因为此时a^n可能小于phi(m)。
    #include <bits/stdc++.h>
    #define maxn 50005
    using namespace std;
    typedef long long ll;
    ll prime[maxn];
    bool vis[maxn];
    int cnt;
    void getprime()
    {
        for(int i=2;i<maxn;i++)
        {
            if(!vis[i])
            {
                prime[cnt++]=i;
            }
            for(int j=0;j<cnt&&prime[j]*i<maxn;j++)
            {
                vis[i*prime[j]]=1;
                if(i%prime[j]==0) break;
            }
        }
    }
    ll phi(ll n)
    {
        ll res=n;
        for(int i=0;i<cnt;i++)
        {
            if(n%prime[i]==0) res=res/prime[i]*(prime[i]-1);
            while(n%prime[i]==0) n/=prime[i];
        }
        if(n>1) res=res/n*(n-1);
        return res;
    }
    ll qpow(ll k,ll n,ll mod)
    {
        ll res=1;
        while(n)
        {
            if(n&1) res=res*k%mod;
            k=k*k%mod;
            n>>=1;
        }
        return res;
    }
    ll cal(ll n,ll m)
    {
        if(m==1) return 0;
        if(n==1) return 1ll;
        if(n==2) return 2ll%m;
        if(n==3) return 9ll%m;
        if(n==4) return 262144ll%m;
        ll tmp=phi(m);
        return qpow(n,cal((n-1),tmp)+tmp,m);
    }
    int main()
    {
        ll n,m;
        getprime();
        scanf("%lld%lld",&n,&m);
        ll ans=cal(n,m);
        printf("%lld
    ",ans);
        return 0;
    }
    

      

     
  • 相关阅读:
    【git】强制覆盖本地代码(与git远程仓库保持一致)
    ffmpeg CLI常用命令
    旧机改造步骤
    macbook air 2012 mid 安装 windows10 双系统遇到错误 no bootable device insert boot disk and press any key
    window、Linux 文本文件转换
    phalcon bug: model的findFirst会自动忽略一些空格
    oss2罗列所有文件
    如何让linux的history命令显示时间记录
    nginx 常用配置
    shell脚本 切换用户
  • 原文地址:https://www.cnblogs.com/zyf3855923/p/9747986.html
Copyright © 2011-2022 走看看