zoukankan      html  css  js  c++  java
  • SQL Server 批量插入数据的两种方法

         在SQL Server 中插入一条数据使用Insert语句,但是如果想要批量插入一堆数据的话,循环使用Insert不仅效率低,而且会导致SQL一系统性能问题。下面介绍SQL Server支持的两种批量数据插入方法:Bulk和表值参数(Table-Valued Parameters)。

    运行下面的脚本,建立测试数据库和表值参数。

    view plaincopy to clipboardprint?
    --Create DataBase  
    create database BulkTestDB;  
    go  
    use BulkTestDB;  
    go  
    --Create Table  
    Create table BulkTestTable(  
    Id int primary key,  
    UserName nvarchar(32),  
    Pwd varchar(16))  
    go  
    --Create Table Valued  
    CREATE TYPE BulkUdt AS TABLE  
      (Id int,  
       UserName nvarchar(32),  
       Pwd varchar(16)) 
    --Create DataBase
    create database BulkTestDB;
    go
    use BulkTestDB;
    go
    --Create Table
    Create table BulkTestTable(
    Id int primary key,
    UserName nvarchar(32),
    Pwd varchar(16))
    go
    --Create Table Valued
    CREATE TYPE BulkUdt AS TABLE
      (Id int,
       UserName nvarchar(32),
       Pwd varchar(16))

    下面我们使用最简单的Insert语句来插入100万条数据,代码如下:

    view plaincopy to clipboardprint?
    Stopwatch sw = new Stopwatch();  
     
    SqlConnection sqlConn = new SqlConnection(  
        ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);//连接数据库  
     
    SqlCommand sqlComm = new SqlCommand();  
    sqlComm.CommandText = string.Format("insert into BulkTestTable(Id,UserName,Pwd)values(@p0,@p1,@p2)");//参数化SQL  
    sqlComm.Parameters.Add("@p0", SqlDbType.Int);  
    sqlComm.Parameters.Add("@p1", SqlDbType.NVarChar);  
    sqlComm.Parameters.Add("@p2", SqlDbType.VarChar);  
    sqlComm.CommandType = CommandType.Text;  
    sqlComm.Connection = sqlConn;  
    sqlConn.Open();  
    try 
    {  
        //循环插入100万条数据,每次插入10万条,插入10次。  
        for (int multiply = 0; multiply < 10; multiply++)  
        {  
            for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)  
            {  
     
                sqlComm.Parameters["@p0"].Value = count;  
                sqlComm.Parameters["@p1"].Value = string.Format("User-{0}", count * multiply);  
                sqlComm.Parameters["@p2"].Value = string.Format("Pwd-{0}", count * multiply);  
                sw.Start();  
                sqlComm.ExecuteNonQuery();  
                sw.Stop();  
            }  
            //每插入10万条数据后,显示此次插入所用时间  
            Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));  
        }  
    }  
    catch (Exception ex)  
    {  
        throw ex;  
    }  
    finally 
    {  
        sqlConn.Close();  
    }  
     
    Console.ReadLine(); 
                Stopwatch sw = new Stopwatch();

                SqlConnection sqlConn = new SqlConnection(
                    ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);//连接数据库

                SqlCommand sqlComm = new SqlCommand();
                sqlComm.CommandText = string.Format("insert into BulkTestTable(Id,UserName,Pwd)values(@p0,@p1,@p2)");//参数化SQL
                sqlComm.Parameters.Add("@p0", SqlDbType.Int);
                sqlComm.Parameters.Add("@p1", SqlDbType.NVarChar);
                sqlComm.Parameters.Add("@p2", SqlDbType.VarChar);
                sqlComm.CommandType = CommandType.Text;
                sqlComm.Connection = sqlConn;
                sqlConn.Open();
                try
                {
                    //循环插入100万条数据,每次插入10万条,插入10次。
                    for (int multiply = 0; multiply < 10; multiply++)
                    {
                        for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
                        {

                            sqlComm.Parameters["@p0"].Value = count;
                            sqlComm.Parameters["@p1"].Value = string.Format("User-{0}", count * multiply);
                            sqlComm.Parameters["@p2"].Value = string.Format("Pwd-{0}", count * multiply);
                            sw.Start();
                            sqlComm.ExecuteNonQuery();
                            sw.Stop();
                        }
                        //每插入10万条数据后,显示此次插入所用时间
                        Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
                    }
                }
                catch (Exception ex)
                {
                    throw ex;
                }
                finally
                {
                    sqlConn.Close();
                }

                Console.ReadLine();

    耗时图如下:

    由于运行过慢,才插入10万条就耗时72390 milliseconds,所以我就手动强行停止了。

    下面看一下使用Bulk插入的情况:

    bulk方法主要思想是通过在客户端把数据都缓存在Table中,然后利用SqlBulkCopy一次性把Table中的数据插入到数据库

    代码如下:

    view plaincopy to clipboardprint?
    public static void BulkToDB(DataTable dt)  
    {  
        SqlConnection sqlConn = new SqlConnection(  
            ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);  
        SqlBulkCopy bulkCopy = new SqlBulkCopy(sqlConn);  
        bulkCopy.DestinationTableName = "BulkTestTable";  
        bulkCopy.BatchSize = dt.Rows.Count;  
     
        try 
        {  
            sqlConn.Open();  
        if (dt != null && dt.Rows.Count != 0)  
            bulkCopy.WriteToServer(dt);  
        }  
        catch (Exception ex)  
        {  
            throw ex;  
        }  
        finally 
        {  
            sqlConn.Close();  
            if (bulkCopy != null)  
                bulkCopy.Close();  
        }  
    }  
     
    public static DataTable GetTableSchema()  
    {  
        DataTable dt = new DataTable();  
        dt.Columns.AddRange(new DataColumn[]{  
            new DataColumn("Id",typeof(int)),  
            new DataColumn("UserName",typeof(string)),  
        new DataColumn("Pwd",typeof(string))});  
     
        return dt;  
    }  
     
    static void Main(string[] args)  
    {  
        Stopwatch sw = new Stopwatch();  
        for (int multiply = 0; multiply < 10; multiply++)  
        {  
            DataTable dt = Bulk.GetTableSchema();  
            for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)  
            {  
                DataRow r = dt.NewRow();  
                r[0] = count;  
                r[1] = string.Format("User-{0}", count * multiply);  
                r[2] = string.Format("Pwd-{0}", count * multiply);  
                dt.Rows.Add(r);  
            }  
            sw.Start();  
            Bulk.BulkToDB(dt);  
            sw.Stop();  
            Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));  
        }  
     
        Console.ReadLine();  

    public static void BulkToDB(DataTable dt)
    {
        SqlConnection sqlConn = new SqlConnection(
            ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);
        SqlBulkCopy bulkCopy = new SqlBulkCopy(sqlConn);
        bulkCopy.DestinationTableName = "BulkTestTable";
        bulkCopy.BatchSize = dt.Rows.Count;

        try
        {
            sqlConn.Open();
     if (dt != null && dt.Rows.Count != 0)
         bulkCopy.WriteToServer(dt);
        }
        catch (Exception ex)
        {
            throw ex;
        }
        finally
        {
            sqlConn.Close();
            if (bulkCopy != null)
                bulkCopy.Close();
        }
    }

    public static DataTable GetTableSchema()
    {
        DataTable dt = new DataTable();
        dt.Columns.AddRange(new DataColumn[]{
            new DataColumn("Id",typeof(int)),
            new DataColumn("UserName",typeof(string)),
     new DataColumn("Pwd",typeof(string))});

        return dt;
    }

    static void Main(string[] args)
    {
        Stopwatch sw = new Stopwatch();
        for (int multiply = 0; multiply < 10; multiply++)
        {
            DataTable dt = Bulk.GetTableSchema();
            for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
            {
                DataRow r = dt.NewRow();
                r[0] = count;
                r[1] = string.Format("User-{0}", count * multiply);
                r[2] = string.Format("Pwd-{0}", count * multiply);
                dt.Rows.Add(r);
            }
            sw.Start();
            Bulk.BulkToDB(dt);
            sw.Stop();
            Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
        }

        Console.ReadLine();
    }

    耗时图如下:

    可见,使用Bulk后,效率和性能明显上升。使用Insert插入10万数据耗时72390,而现在使用Bulk插入100万数据才耗时17583。

    最后再看看使用表值参数的效率,会另你大为惊讶的。

    表值参数是SQL Server 2008新特性,简称TVPs。对于表值参数不熟悉的朋友,可以参考最新的book online,我也会另外写一篇关于表值参数的博客,不过此次不对表值参数的概念做过多的介绍。言归正传,看代码:

    view plaincopy to clipboardprint?
    public static void TableValuedToDB(DataTable dt)  
    {  
        SqlConnection sqlConn = new SqlConnection(  
          ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);  
        const string TSqlStatement =  
         "insert into BulkTestTable (Id,UserName,Pwd)" +  
         " SELECT nc.Id, nc.UserName,nc.Pwd" +  
         " FROM @NewBulkTestTvp AS nc";  
        SqlCommand cmd = new SqlCommand(TSqlStatement, sqlConn);  
        SqlParameter catParam = cmd.Parameters.AddWithValue("@NewBulkTestTvp", dt);  
        catParam.SqlDbType = SqlDbType.Structured;  
        //表值参数的名字叫BulkUdt,在上面的建立测试环境的SQL中有。  
        catParam.TypeName = "dbo.BulkUdt";  
        try 
        {  
          sqlConn.Open();  
          if (dt != null && dt.Rows.Count != 0)  
          {  
              cmd.ExecuteNonQuery();  
          }  
        }  
        catch (Exception ex)  
        {  
          throw ex;  
        }  
        finally 
        {  
          sqlConn.Close();  
        }  
    }  
     
    public static DataTable GetTableSchema()  
    {  
        DataTable dt = new DataTable();  
        dt.Columns.AddRange(new DataColumn[]{  
          new DataColumn("Id",typeof(int)),  
          new DataColumn("UserName",typeof(string)),  
          new DataColumn("Pwd",typeof(string))});  
     
        return dt;  
    }  
     
    static void Main(string[] args)  
    {  
        Stopwatch sw = new Stopwatch();  
        for (int multiply = 0; multiply < 10; multiply++)  
        {  
            DataTable dt = TableValued.GetTableSchema();  
            for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)  
            {          
                DataRow r = dt.NewRow();  
                r[0] = count;  
                r[1] = string.Format("User-{0}", count * multiply);  
                r[2] = string.Format("Pwd-{0}", count * multiply);  
                dt.Rows.Add(r);  
            }  
            sw.Start();  
            TableValued.TableValuedToDB(dt);  
            sw.Stop();  
            Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));  
        }  
     
        Console.ReadLine();  

    public static void TableValuedToDB(DataTable dt)
    {
        SqlConnection sqlConn = new SqlConnection(
          ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);
        const string TSqlStatement =
         "insert into BulkTestTable (Id,UserName,Pwd)" +
         " SELECT nc.Id, nc.UserName,nc.Pwd" +
         " FROM @NewBulkTestTvp AS nc";
        SqlCommand cmd = new SqlCommand(TSqlStatement, sqlConn);
        SqlParameter catParam = cmd.Parameters.AddWithValue("@NewBulkTestTvp", dt);
        catParam.SqlDbType = SqlDbType.Structured;
        //表值参数的名字叫BulkUdt,在上面的建立测试环境的SQL中有。
        catParam.TypeName = "dbo.BulkUdt";
        try
        {
          sqlConn.Open();
          if (dt != null && dt.Rows.Count != 0)
          {
              cmd.ExecuteNonQuery();
          }
        }
        catch (Exception ex)
        {
          throw ex;
        }
        finally
        {
          sqlConn.Close();
        }
    }

    public static DataTable GetTableSchema()
    {
        DataTable dt = new DataTable();
        dt.Columns.AddRange(new DataColumn[]{
          new DataColumn("Id",typeof(int)),
          new DataColumn("UserName",typeof(string)),
          new DataColumn("Pwd",typeof(string))});

        return dt;
    }

    static void Main(string[] args)
    {
        Stopwatch sw = new Stopwatch();
        for (int multiply = 0; multiply < 10; multiply++)
        {
            DataTable dt = TableValued.GetTableSchema();
            for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
            {       
                DataRow r = dt.NewRow();
                r[0] = count;
                r[1] = string.Format("User-{0}", count * multiply);
                r[2] = string.Format("Pwd-{0}", count * multiply);
                dt.Rows.Add(r);
            }
            sw.Start();
            TableValued.TableValuedToDB(dt);
            sw.Stop();
            Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
        }

        Console.ReadLine();
    }

    耗时图如下:

    比Bulk还快5秒。

    如需转载,请注明此文原创自CSDN TJVictor专栏:http://blog.csdn.net/tjvictor/archive/2009/07/18/4360030.aspx

    本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/tjvictor/archive/2009/07/18/4360030.aspx

  • 相关阅读:
    敏捷开发
    Response.Write(js脚本)后 Response.redirect(...),为什么js脚本不执行,怎么解决!
    kaixin.com一波三折看SNS
    JavaScript数组的自定义 sort方法
    简单明了的SQL join解释
    [官方资料] 介绍 JSON
    SQL UNION 和 UNION ALL 操作符
    JavaScript frames 对象
    理解hasOwnProperty
    asp.net网站安全常见问题与防范
  • 原文地址:https://www.cnblogs.com/zyip/p/1782426.html
Copyright © 2011-2022 走看看