版权声明:本文为博主林炳文Evankaka原创文章,转载请注明出处http://blog.csdn.net/evankaka
一、准备工作与代码实例
1、PIL、pytesser、tesseract(1)安装PIL:下载地址:http://www.pythonware.com/products/pil/(CSDN下载)
下载后是一个exe,直接双击安装,它会自动安装到C:Python27Libsite-packages中去,
个人补充:上面是32位,个人查到64位地址
http://www.qttc.net/201210230.html
(2)pytesser:下载地址:http://code.google.com/p/pytesser/,(CSDN下载)
下载解压后直接放C:Python27Libsite-packages(根据你安装的Python路径而不同),同时,新建一个pytesser.pth,内容就写pytesser,注意这里的内容一定要和pytesser这个文件夹同名,意思就是pytesser文件夹,pytesser.pth,及内容都要一样!
(3)Tesseract OCR engine下载:http://code.google.com/p/tesseract-ocr/(CSDN下载)
下载后解压,tessdata文件夹,用其替换掉pytesser解压后的tessdata文件夹即可。(就上面的pytesser文件夹)
二、验证
(1)原理:
验证码图像处理
验证码图像识别技术主要是操作图片内的像素点,通过对图片的像素点进行一系列的操作,最后输出验证码图像内的每个字符的文本矩阵。
1、读取图片
2、图片降噪
3、图片切割
4、图像文本输出
(2)验证字符识别
验证码内的字符识别主要以机器学习的分类算法来完成,目前我所利用的字符识别的算法为KNN(K邻近算法)和SVM (支持向量机算法),后面我 会对这两个算法的适用场景进行详细描述。
1、获取字符矩阵
2、矩阵进入分类算法
3、输出结果
要验证的图片如下:
(3)、简单的命令:
- from pytesser import *
- image = Image.open('1.jpg') # Open image object using PIL
- print image_to_string(image) # Run tesseract.exe on image
或者直接:
- print image_file_to_string('fnord.tif')
(4)、复杂一点的
上面的只能对一些比较简单的做处理,一
原理:彩色转灰度,灰度转二值,二值图像识别
- # 验证码识别,此程序只能识别数据验证码
- import Image
- import ImageEnhance
- import ImageFilter
- import sys
- from pytesser import *
- # 二值化
- threshold = 140
- table = []
- for i in range(256):
- if i < threshold:
- table.append(0)
- else:
- table.append(1)
- #由于都是数字
- #对于识别成字母的 采用该表进行修正
- rep={'O':'0',
- 'I':'1','L':'1',
- 'Z':'2',
- 'S':'8'
- };
- def getverify1(name):
- #打开图片
- im = Image.open(name)
- #转化到灰度图
- imgry = im.convert('L')
- #保存图像
- imgry.save('g'+name)
- #二值化,采用阈值分割法,threshold为分割点
- out = imgry.point(table,'1')
- out.save('b'+name)
- #识别
- text = image_to_string(out)
- #识别对吗
- text = text.strip()
- text = text.upper();
- for r in rep:
- text = text.replace(r,rep[r])
- #out.save(text+'.jpg')
- print text
- return text
- getverify1('1.jpg') #注意这里的图片要和此文件在同一个目录,要不就传绝对路径也行
运行后效果:
转载:http://blog.csdn.net/evankaka/article/details/49533493