http://acm.hdu.edu.cn/showproblem.php?pid=2709
Problem Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
题意分析:
只使用整数幂为2的数字拼凑数字,求一个有多少种可能。
解题思路:
一个奇数,可能数和比它小1的数相同,
比如9和8,把它分成1和8,8那一部分就是a[8],而这边的1不能再操作。
一个偶数8分成1和77那一部分是a[7],再加上一个1
从1 1 2 2 2 开始,变成2 2 2 2,后面的情况就像是4个1来组成4一样,有a[4]种,即a[i/2]。
所以有公式i为奇数时: a[i]=a[i-1];
i为偶数时: a[i]=a[i-1]+a[i/2];
#include <stdio.h>
#define N 1000020
int a[N];
int main()
{
int n;
a[1]=1;
for(int i=2; i<N; i++)
if(i%2==1)
a[i]=a[i-1];
else
a[i]=(a[i-1]+a[i/2])%1000000000;
while(scanf("%d", &n)!=EOF)
printf("%d
", a[n]);
return 0;
}