zoukankan      html  css  js  c++  java
  • 图像识别原理之如何识别图像边缘

    如何识别图像边缘?

     

    作者: 阮一峰

    日期: 2016年7月22日

    图像识别(image recognition)是现在的热门技术。

    文字识别、车牌识别、人脸识别都是它的应用。但是,这些都算初级应用,现在的技术已经发展到了这样一种地步:计算机可以识别出,这是一张狗的照片,那是一张猫的照片。

    这是怎么做到的?

    让我们从人眼说起,学者发现,人的视觉细胞对物体的边缘特别敏感。也就是说,我们先看到物体的轮廓,然后才判断这到底是什么东西。

    计算机科学家受到启发,第一步也是先识别图像的边缘。

    加州大学的学生 Adit Deshpande 写了一篇文章《A Beginner's Guide To Understanding Convolutional Neural Networks》,介绍了一种最简单的算法,非常具有启发性,体现了图像识别的基本思路。

    首先,我们要明白,人看到的是图像,计算机看到的是一个数字矩阵。所谓"图像识别",就是从一大堆数字中找出规律。

    怎样将图像转为数字呢?一般来说,为了过滤掉干扰信息,可以把图像缩小(比如缩小到 49 x 49 像素),并且把每个像素点的色彩信息转为灰度值,这样就得到了一个 49 x 49 的矩阵。

    然后,从左上角开始,依次取出一个小区块,进行计算。

    上图是取出一个 5 x 5 的区块。下面的计算以 7 x 7 的区块为例。

    接着,需要有一些现成的边缘模式,比如垂直、直角、圆、锐角等等。

    上图右边是一个圆角模式,左边是它对应的 7 x 7 灰度矩阵。可以看到,圆角所在的边缘灰度值比较高,其他地方都是0。

    现在,就可以进行边缘识别了。下面是一张卡通老鼠的图片。

    取出左上角的区块。

    取样矩阵与模式矩阵对应位置的值相乘,进行累加,得到6600。这个值相当大,它说明什么呢?

    取样矩阵移到老鼠头部,与模式矩阵相乘,得到的值是0。

    乘积越大就说明越匹配,可以断定区块里的图像形状是圆角。通常会预置几十种模式,每个区块计算出最匹配的模式,然后再对整张图进行判断。

    (完)

    文章来源http://www.ruanyifeng.com/blog/2016/07/edge-recognition.html

  • 相关阅读:
    pydata-book-利用python进行数据分析-github
    利用Python进行数据分析-github
    stanford提供的数据库
    转:python 实现GUI(图形用户界面)编程
    PyGObject的使用手册
    python-install-package-C++编译器问题---06
    git 命令大全
    redis复习
    Python 十进制转换为二进制 高位补零
    cURL可以做的10件事
  • 原文地址:https://www.cnblogs.com/zys8119/p/6054236.html
Copyright © 2011-2022 走看看