zoukankan      html  css  js  c++  java
  • 系统综合实践第7次实践作业 第32组

    (1) 在树莓派中安装opencv库

    参考教程:关于opencv的编译安装,可以参考Adrian Rosebrock的Raspbian Stretch: Install OpenCV 3 + Python on your Raspberry Pi。

    步骤一:拓展SD卡内存

    sudo raspi-config #打开树莓派配置
    #选择Advanced Options——>Expand fileSystem
    
    sudo reboot #重启
    df -h #查看内存使用情况,如果内存占用过多建议卸载LibreOffice和 Wolfram engine来释放空间
    #卸载
    sudo apt-get purge wolfram-engine
    sudo apt-get purge libreoffice*
    sudo apt-get clean
    sudo apt-get autoremove
    

    步骤二:安装依赖库(建议先换国内源,否则你就痛苦吧)

    更新和升级软件包

     sudo apt-get update && sudo apt-get upgrade
    

    安装一些开发者工具

     sudo apt-get install build-essential cmake pkg-config
    

    安装image I/O所需的包

    sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
    

    安装video I/O所需的包

    sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    sudo apt-get install libxvidcore-dev libx264-dev
    

    安装编译highgui所需包

    sudo apt-get install libgtk2.0-dev libgtk-3-dev
    

    安装一些扩展包

    sudo apt-get install libatlas-base-dev gfortran
    

    安装python

    sudo apt-get install python2.7-dev python3-dev
    

    安装pip

    wget https://bootstrap.pypa.io/get-pip.py
    sudo python get-pip.py
    sudo python3 get-pip.py
    

    python2安装opencv

    python2 -m pip install opencv-python  -i https://pypi.tuna.tsinghua.edu.cn/simple
    

    python3安装opencv

    sudo pip3 install opencv_python-3.4.3.18-cp37-cp37m-linux_armv7l.whl  #这里是把所需的包事先下载到本地,进行本地安装。
    sudo apt install libqt4-test      #安装缺少的依赖包
    sudo apt install libqtgui4
    

    测试是否编译成功

    python2
    import cv2
    cv2.__version__
    

    python3
    import cv2
    cv2.__version__
    

    (2) 使用opencv和python控制树莓派的摄像头

    参考教程:还是可以参考Adrian Rosebrock的Accessing the Raspberry Pi Camera with OpenCV and Python
    跑通教程的示例代码(有可能要调整里面的参数)

    安装picamare

    pip install "picamera[array]" 
    

    很好,我们已经有了picamera了,不需要安装了。

    拍照这部分上次作业有做过,这里就不再重复了。

    拍视频示例代码(test_video.py)

    # import the necessary packages
    from picamera.array import PiRGBArray
    from picamera import PiCamera
    import time
    import cv2
    # initialize the camera and grab a reference to the raw camera capture
    camera = PiCamera()
    camera.resolution = (640, 480)
    camera.framerate = 32
    rawCapture = PiRGBArray(camera, size=(640, 480))
    # allow the camera to warmup
    time.sleep(0.1)
    # capture frames from the camera
    for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
    	# grab the raw NumPy array representing the image, then initialize the timestamp
    	# and occupied/unoccupied text
    	image = frame.array
    	# show the frame
    	cv2.imshow("Frame", image)
    	key = cv2.waitKey(1) & 0xFF
    	# clear the stream in preparation for the next frame
    	rawCapture.truncate(0)
    	# if the `q` key was pressed, break from the loop
    	if key == ord("q"):
    		break
    

    视频截图

    (3) 利用树莓派的摄像头实现人脸识别

    人脸识别有开源的python库face_recognition,这当中有很多示例代码
    要求:跑通face_recognition的示例代码facerec_on_raspberry_pi.py以及facerec_from_webcam_faster.py
    参考教程:树莓派上使用python实现人脸识别

    安装dlib、facerecognition

    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package --default-timeout=100 dlib
    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package  --default-timeout=100 face_recognition
    

    示例一代码

    # coding = utf-8
    import face_recognition
    import picamera
    import numpy as np
     
    # 创建视频对象
    camera = picamera.PiCamera()
    # 设置分辨率
    camera.resolution = (320, 240)
    # 初始化一个空的ndarray类型的数据
    rgb_frame = np.empty((240, 320, 3), dtype=np.uint8)
     
    # 加载当前目录下名为'test.jpg'的照片,照片里需要有且仅有一张脸,这张脸将作为认识的脸
    print('loading...')
    image = face_recognition.load_image_file('test.jpg')
    face_encoding = face_recognition.face_encodings(image)[0]
     
    while True:
     
        print('Capturing image.')
        # 用Picamera读取一帧照片
        camera.capture(rgb_frame, format='rgb')
     
        # 获取这一帧图片里所有人脸的位置和特征值
        face_locations = face_recognition.face_locations(rgb_frame)
        print('Found {} faces in image.'.format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)
     
        # 对获取的每张脸进行循环,判断是否是认识的脸
        for face_encoding in face_encodings:
            # 判断当前的脸是否与认识的脸匹配
            match = face_recognition.compare_faces([face_encoding], face_encoding)
            name = '<Unknown Person>'
     
            if match[0]:
                name = 'test'  # test为'test.jpg'里面人脸的名字
            print('I see someone named {}!'.format(name))
    

    在代码目录下添加一张test.jpg

    结果如下

    示例二代码

    import face_recognition
    import cv2
    import numpy as np
    
    # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
    # other example, but it includes some basic performance tweaks to make things run a lot faster:
    #   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
    #   2. Only detect faces in every other frame of video.
    
    # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
    # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
    # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
    
    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0)
    
    # Load a sample picture and learn how to recognize it.
    obama_image = face_recognition.load_image_file("obama.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Load a second sample picture and learn how to recognize it.
    biden_image = face_recognition.load_image_file("biden.jpg")
    biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        obama_face_encoding,
        biden_face_encoding
    ]
    known_face_names = [
        "Barack Obama",
        "Joe Biden"
    ]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    
    while True:
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # # If a match was found in known_face_encodings, just use the first one.
                # if True in matches:
                #     first_match_index = matches.index(True)
                #     name = known_face_names[first_match_index]
    
                # Or instead, use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    

    在工作目录下存放Obama和biden的图片

    结果如下

    (4) 结合微服务的进阶任务

    使用微服务,部署opencv的docker容器(要能够支持arm),并在opencv的docker容器中跑通(3)的示例代码facerec_on_raspberry_pi.py

    首先,先在树莓派上安装docker

    sudo curl -sSL https://get.docker.com | sh
    

    然后,拉取opencv镜像

    sudo docker pull  sixsq/opencv-python 
    
    

    建一个工作目录,编写dockerfile,将所需文件放进来

    dockerfile

    FROM sixsq/opencv-python
    MAINTAINER gg
    WORKDIR /usr/local/opencv
    COPY ./face_recognition-1.3.0-py2.py3-none-any.whl /usr/local/opencv
    COPY ./face_recognition_models-0.3.0-py2.py3-none-any.whl  /usr/local/opencv
    RUN sudo pip install -i  https://pypi.tuna.tsinghua.edu.cn/simple --upgrade pip && 
        pip install --upgrade -i  https://pypi.tuna.tsinghua.edu.cn/simple --default-timeout=500 "picamera[array]" dlib && 
        python3 -m pip install wheel face_recognition_models-0.3.0-py2.py3-none-any.whl && 
        python3 -m pip install wheel face_recognition-1.3.0-py2.py3-none-any.whl 
    EXPOSE 80
    
    

    构建镜像

    sudo docker build -t myopencv .
    

    用该镜像创建容器

    #创建并运行容器
    docker run -it --rm --name myopencv -v /home/pi/docker/opencv:/usr/local/opencv --device=/dev/vchiq --device=/dev/video0 myopencv /bin/bash
    #在容器内部运行人脸识别代码
    python3 ./face_test1.py
    

    结果:

    选做:在opencv的docker容器中跑通步骤(3)的示例代码facerec_from_webcam_faster.py

    (5) 以小组为单位,发表一篇博客,记录遇到的问题和解决方法,提供小组成员名单以及在线协作的图片

    小组成员

    031702518 吴长星
    031702526 周华
    031702103 朱雅珊
    

    遇到的问题

    一、安装OpenCV时提示缺少boostdesc_bgm.i文件

    解决方案:参考安装OpenCV时提示缺少boostdesc_bgm.i文件的问题解决方案(附带资源)

    二、安装opencv时提示没有找到cuda.hpp文件

    解决方案:找到cuda.hpp,记下它的绝对路径,找到报错的文件(这里是matchers.hpp),用文本编辑器打开,找到出错的语句(这里是" # include "opencv/..." "),将
    引号中的路径改为绝对路径。
    后来也遇到多次相同的错误,也是同样的处理:找到缺失的文件的绝对路径,在找到并修改出错的文件。

    三、编译时遇到内存不足的情况

    解决方案:参考linux问题记录

    四、编译时


    啧,这个问题没解决,我们决定换成用pip安装opencv。(明明用pip安装那么方便,为什么百度上一堆都是用make编译的勒?)

    五、在pip install 时经常出现read timeout

    解决方案:1、使用-i 参数换成国内源;2、使用--default-timeout=100参数避免下载速度过慢导致的timeout

    协作截图

    (6) 参考资料

    子豪兄教你在树莓派上安装OpenCV

  • 相关阅读:
    画图工具Graphviz安装配置
    转:完善eclipse+pdt作php开发中的代码提示能力
    转:SVN 出现This client is too old to work with working copy...错误
    Codeforces Round #260 (Div. 2)C. Boredom(dp)
    three.js 源代码凝视(十四)Math/Sphere.js
    android项目中刷新activity界面
    中科燕园GIS外包---地铁GIS项目
    华为HCNA教程(笔记)
    HapiJS开发手冊
    《Java并发编程实战》第十四章 构建自己定义的同步工具 读书笔记
  • 原文地址:https://www.cnblogs.com/zys99/p/13095802.html
Copyright © 2011-2022 走看看