zoukankan      html  css  js  c++  java
  • 【BZOJ1487】[HNOI2009]无归岛(仙人掌 DP)

    题目:

    BZOJ1487

    分析:

    题目中给定的图一定是一棵仙人掌(每条边最多属于一个环),证明如下:

    先考虑单独一个岛的情况。第一,一个岛一定是一张「弦图」,即任意一个大小超过 3 的环都至少有 1 条弦。否则,这个环上不相邻的两点就不存在公共朋友,不符合「有一个公共朋友」。

    第二,不存在有一条边被超过一个三元环包含。否则,这些三元环上与这条边相对的顶点都与这条边的两端点相邻,不符合「只有一个公共朋友」。

    所以,每条边最多属于一个三元环。而由于大小超过 3 的环的弦一定存在于至少两个三元环中,所以不存在大小超过 3 的环。所以,在同一个岛中,每条边最多属于一个环,即为一个仙人掌。

    现在,在每个岛(仙人掌)中选出一点与特定的另外两点相连,形成一个环。显然,每条新边都不可能和原本的仙人掌森林中的边形成环,所以这些新边在且仅在这个新环中。综上所述,原图是一个仙人掌。

    那么这就是一个仙人掌 DP 的板子了(雾) 。设 (f[i][0/1]) 表示点 (i) 没选 / 选了时它的「子树」(见下文)内的最大权值。如果是一棵树,那么这就是一个非常简单的 DP (不会做的自觉面壁)。

    下面这段比较难理解,不理解的话可以自己画个图手跑 Tarjan 。

    考虑 Tarjan 求点双联通分量的过程。定义一个环的「根」为这个环上 dfs 序最小的点(就是建圆方树的时候把整个点双联通分量加进圆方树那个点 —— 只是以此为例说明,并不说明要建圆方树,下同)。如果一个环上所有的点的深度都大于等于某个点,那么这个环就在这个点的「子树」中,否则不算。即,一个环上只有这个环的「根」的子树包含这个环,这个环上被选中的点的权值在环上只算进根的 (f) 值。

    当回溯到环的「根」时(就是把整个点双联通分量插入圆方树的时候),环上其他点的 (f) 值都已经计算完毕(再次强调,这些值都与这个环上的除了自己以外的点无关)。现在问题变成了:有一个环,选环上点 (i) 的权值是 (f[i][1]),不选的权值是 (f[i][0]) ,不能选相邻点,求最大能获得的权值。特别地,根的权值同样直接就是当前根的 (f) 值,因为要考虑这个根已经处理过的其他子树的权值。此处不理解的话参考树的做法。这个问题可以设 (g[i][0/1][0/1]) 表示当前考虑到第 (i) 个点,第一个点没选 / 选了,第 (i) 个点没选 / 选了。这个不会做的请继续面壁。

    好像就这么多了?完结撒花~

    代码:

    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <cctype>
    using namespace std;
    
    namespace zyt
    {
    	template<typename T>
    	inline bool read(T &x)
    	{
    		char c;
    		bool f = false;
    		x = 0;
    		do
    			c = getchar();
    		while (c != EOF && c != '-' && !isdigit(c));
    		if (c == EOF)
    			return false;
    		if (c == '-')
    			f = true, c = getchar();
    		do
    			x = x * 10 + c - '0', c = getchar();
    		while (isdigit(c));
    		if (f)
    			x = -x;
    		return true;
    	}
    	template<typename T>
    	inline void write(T x)
    	{
    		static char buf[20];
    		char *pos = buf;
    		if (x < 0)
    			putchar('-'), x = -x;
    		do
    			*pos++ = x % 10 + '0';
    		while (x /= 10);
    		while (pos > buf)
    			putchar(*--pos);
    	}
    	const int N = 1e5 + 10, M = 2e5 + 10, INF = 0x3f3f3f3f;
    	int n, m, head[N], w[N], ecnt;
    	struct edge
    	{
    		int to, next;
    	}e[M << 1];
    	void add(const int a, const int b)
    	{
    		e[ecnt] = (edge){b, head[a]}, head[a] = ecnt++;
    	}
    	int dfn[N], low[N], dfncnt, f[N][2];
    	bool vis[M << 1];
    	void Tarjan(const int u, const int from)
    	{
    		static int sta[M << 1], top;
    		dfn[u] = low[u] = ++dfncnt;
    		f[u][0] = 0, f[u][1] = w[u];
    		for (int i = head[u]; ~i; i = e[i].next)
    		{
    			int v = e[i].to;
    			if (vis[i] || (i ^ 1) == from)
    				continue;
    			sta[top++] = i;
    			if (dfn[v])
    				low[u] = min(low[u], dfn[v]);
    			else
    			{
    				Tarjan(v, i);
    				low[u] = min(low[u], low[v]);
    				if (low[v] >= dfn[u])
    				{
    					if (sta[top - 1] == i)
    					{
    						f[u][0] += f[v][1], f[u][1] += f[v][0];
    						vis[sta[top - 1]] = vis[sta[top - 1] ^ 1] = true;
    						--top;
    					}
    					else
    					{
    						static int buf[N];
    						int cnt = 0, t;
    						do
    						{
    							t = sta[--top];
    							vis[t] = vis[t ^ 1] = true;
    							buf[cnt++] = e[t].to;
    						}
    						while (t != i);
    					   	static int dp[N][2][2];
    						dp[0][0][0] = dp[0][0][1] = f[u][0];
    						dp[0][1][0] = -INF, dp[0][1][1] = f[u][1];
    						for (int i = 1; i < cnt; i++)
    							for (int j = 0; j < 2; j++)
    							{
    								dp[i][j][0] = dp[i - 1][j][1] + f[buf[i]][0];
    								dp[i][j][1] = dp[i - 1][j][0] + f[buf[i]][1];
    								dp[i][j][1] = max(dp[i][j][1], dp[i][j][0]);
    							}
    						f[u][0] = dp[cnt - 1][0][1], f[u][1] = dp[cnt - 1][1][0];
    					}
    				}
    			}
    		}
    		f[u][1] = max(f[u][1], f[u][0]);
    	}
    	int work()
    	{
    		read(n), read(m);
    		memset(head, -1, sizeof(int[n + 1]));
    		for (int i = 0; i < m; i++)
    		{
    			int a, b;
    			read(a), read(b);
    			add(a, b), add(b, a);
    		}
    		for (int i = 1; i <= n; i++)
    			read(w[i]);
    		Tarjan(1, -1);
    		write(max(f[1][0], f[1][1]));
    		return 0;
    	}
    }
    int main()
    {
    	freopen("1487.in", "r", stdin);
    	return zyt::work();
    }
    
  • 相关阅读:
    uva12063数位dp
    bzoj2002弹(dan)飞绵羊 分块水过
    bzoj2243树链剖分+染色段数
    winPcap编程之获取适配器信息(二)
    -Dmaven.multiModuleProjectDirectory system propery is not set.
    winPcap编程之环境搭建(一)
    java之基础数据类型学习————(一)
    JAVA几种常见的编码格式(转)
    程序员网址大全(转)
    由String的构造方法引申出来的java字符编码
  • 原文地址:https://www.cnblogs.com/zyt1253679098/p/10881660.html
Copyright © 2011-2022 走看看