zoukankan      html  css  js  c++  java
  • PKU 3275 Ranking the Cows 最短路 floyd

    题意/Description

        Each of Farmer John's N cows (1 ≤ N ≤ 1,000) produces milk at a different positive rate, and FJ would like to order his cows according to these rates from the fastest milk producer to the slowest.

        FJ has already compared the milk output rate for M (1 ≤ M ≤ 10,000) pairs of cows. He wants to make a list of C additional pairs of cows such that, if he now compares those C pairs, he will definitely be able to deduce the correct ordering of all N cows. Please help him determine the minimum value of C for which such a list is possible.

     

    读入/Input

        Line 1: Two space-separated integers: N and M 
        Lines 2..M+1: Two space-separated integers, respectively: X and Y. Both X and Y are in the range 1...N and describe a comparison where cow X was ranked higher than cow Y.

     

    输出/Output

        Line 1: A single integer that is the minimum value of C.

     

    题解/solution

       如果n头牛排序完成,应该有C(n,2)关系已知,即任意两头牛的速度都知道了。然后可以从已经比较了的m对牛中算出可以推导出多少对牛已经知道了,推导方法可以参考floyd最短路,然后用C(n,2)减去它就是答案。

       补充:C(N, 2) = N * (N - 1) / 2

       调查K对关系:C(N, 2) - K

     

    代码/Code

    var
      a,b:array [0..10001,0..1001] of longint;
      f:array [0..1001,0..1001] of boolean;
      n,m,ans:longint;
    procedure init;
    var
      i,x,y:longint;
    begin
      readln(n,m);
      for i:=1 to m do
        begin
          readln(x,y);
          f[x,y]:=true;
          inc(a[x,0]); inc(b[y,0]);
          a[x,a[x,0]]:=y; b[y,b[y,0]]:=x;
        end;
      ans:=0;
    end;
    
    procedure main;
    var
      i,j,k,x,y:longint;
    begin
      for k:=1 to n do
        for i:=1 to b[k,0] do
          begin
            x:=b[k,i];
            for j:=1 to a[k,0] do
              begin
                y:=a[k,j];
                if not f[x,y] then
                  begin
                    f[x,y]:=true;
                    inc(a[x,0]); inc(b[y,0]);
                    a[x,a[x,0]]:=y; b[y,b[y,0]]:=x;
                    inc(ans);
                  end;
              end;
          end;
      write(n*(n-1) div 2-ans-m);
    end;
    
    begin
      init;
      main;
    end.
    



  • 相关阅读:
    系统可用性
    如何在代码层实现可测试性-以《热词分析》代码为例
    python爬虫(五) ProxyHandler处理器
    python爬虫(二) urlparse和urlsplit函数
    以《淘宝网》为例,描绘质量属性的六个常见属性
    python爬虫(一)
    软件架构师如何工作
    学习进度-17 架构
    Linux中MySQL5.6编译安装与MySQL5.7二进制安装步骤
    Linux Rsync备份服务介绍及部署守护进程模式
  • 原文地址:https://www.cnblogs.com/zyx-crying/p/9319718.html
Copyright © 2011-2022 走看看