To the Max
Time Limit: 1000MS
Memory Limit: 10000K
Total Submissions: 38573
Accepted: 20350
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0
9 2 -6 2 -4 1 -4 1
-1 8 0 -2
Sample Output
15
题解:假设已经知道矩形的上下边界,比如知道矩形的区域的上下边界分别是第a行和第c行,现在要确定左右边界;
代码:
#include <iostream> #define INF 2147483647 using namespace std; int a[1010][1010]; int sum[1010][1010];//数组我开的比较大,这无所谓 int Maxsum(int n,int m) {//求最大子矩阵之和 int i,j,k; int Max=-INF; for(i=0;i<=n;i++) sum[i][0]=0; for(i=1;i<=m;i++) sum[0][i]=0; for(i=1;i<=n;i++) { for(j=i;j<=n;j++) { sum[j][m]=sum[j-1][m]+a[j][m];//sum[a][b]储存 第b列中 第1行到第a行之间所有元素的和 int tmp=sum[j][m]-sum[i-1][m];//此时tmp值为 第m列中 第i行到第j行之间所有元素之和 int big=tmp; for(k=m-1;k>=1;k--) { if(tmp<0) tmp=0; sum[j][k]=sum[j-1][k]+a[j][k]; tmp+=sum[j][k]-sum[i-1][k]; big=max(big,tmp); Max=max(big,Max); } } } return Max; } int main() { int n,m,i,j; cin>>n; m=n;//这里可变为cin>>m,则矩阵是n*m for(i=1;i<=n;i++) for(j=1;j<=m;j++) cin>>a[i][j]; cout<<Maxsum(n,m)<<endl; return 0; }