zoukankan      html  css  js  c++  java
  • IO

    当你发现自己最受欢迎的一篇blog其实大错特错时,这绝对不是一件让人愉悦的事。
    《 IO - 同步,异步,阻塞,非阻塞 》是我在开始学习epoll和libevent的时候写的,主要的思路来自于文中的那篇link 。写完之后发现很多人都很喜欢,我还是非常开心的,也说明这个问题确实困扰了很多人。随着学习的深入,渐渐的感觉原来的理解有些偏差,但是还是没引起自己的重视,觉着都是一些小错误,无伤大雅。直到有位博友问了一个问题,我重新查阅了一些更权威的资料,才发现原来的文章中有很大的理论错误。我不知道有多少人已经看过这篇blog并受到了我的误导,鄙人在此表示抱歉。俺以后写技术blog会更加严谨的。
    一度想把原文删了,最后还是没舍得。毕竟每篇blog都花费了不少心血,另外放在那里也可以引以为戒。所以这里新补一篇。算是亡羊补牢吧。

    言归正传。
    同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,我先限定一下本文的上下文。
    本文讨论的背景是Linux环境下的network IO。
    本文最重要的参考文献是Richard Stevens的“UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking ”,6.2节“I/O Models ”,Stevens在这节中详细说明了各种IO的特点和区别,如果英文够好的话,推荐直接阅读。Stevens的文风是有名的深入浅出,所以不用担心看不懂。本文中的流程图也是截取自参考文献。

    Stevens在文章中一共比较了五种IO Model:
        blocking IO
        nonblocking IO
        IO multiplexing
        signal driven IO
        asynchronous IO
    由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。

    我们首先要确定一下我们讨论的上下文(context),那就是Linux的network IO。对于一个网络IO来说(以read作为例子),其执行过程通常可以分为两个阶段。第一阶段,等待数据从网络中到达,并被拷贝到内核中某个缓冲区(Waiting for the data to be ready)。第二阶段,把数据从内核态的缓冲区拷贝到用户态的应用进程缓冲区来(Copying the data from the kernel to the process)。

    再说一下IO发生时涉及的对象和步骤。
    对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:
     1 等待数据准备 (Waiting for the data to be ready)
     2 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)
    记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。

    blocking IO
    在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

     

    当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
    所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

    non-blocking IO

    linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

     

    从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。
    所以,用户进程其实是需要不断的主动询问kernel数据好了没有。

           默认创建的socket都是阻塞的,非阻塞IO要求socket被设置为NONBLOCK。注意这里所说的NIO并非Java的NIO(New IO)库

          用户需要不断地调用read,尝试读取socket中的数据,直到读取成功后,才继续处理接收的数据。
    整个IO请求的过程中,虽然用户线程每次发起IO请求后可以立即返回,但是为了等到数据,
    仍需要不断地轮询、重复请求,消耗了大量的CPU的资源。
    一般很少直接使用这种模型,而是在其他IO模型中使用非阻塞IO这一特性。

    IO multiplexing

    IO multiplexing这个词可能有点陌生,但是如果我说select,epoll,大概就都能明白了。有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

     

    当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
    这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)使用select以后最大的优势是用户可以

    在一个线程内同时处理多个socket的IO请求。即可达到在同一个线程内同时处理多个IO请求的目的

    在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

    此模型用到select和poll函数,这两个函数也会使进程阻塞,
    用户首先将需要进行IO操作的socket添加到select中,
    然后阻塞等待select系统调用返回,select先阻塞,有活动套接字才返回,
    但是和阻塞I/O不同的是,这两个函数可以同时阻塞多个I/O操作,而且可以同时对多个读操作,
    多个写操作的I/O函数进行检测,直到有数据可读或可写(就是监听多个socket)。select被调用后,
    进程会被阻塞,内核监视所有select负责的socket,
    当有任何一个socket的数据准备好了,select就会返回套接字可读,我们就可以调用recvfrom处理数据。
    正因为阻塞I/O只能阻塞一个I/O操作,而I/O复用模型能够阻塞多个I/O操作,所以才叫做多路复用。

    IO多路复用模型是建立在内核提供的多路分离函数select基础之上的,使用select函数可以
    避免同步非阻塞IO模型中轮询等待的问题。
    为了避免这里cpu的空转,我们不让这个线程亲自去检查流中是否有事件,
    而是引进了一个代理(一开始是select,后来是poll),这个代理很牛,
    它可以同时观察许多流的I/O事件,如果没有事件,代理就阻塞,线程就不会挨个挨个去轮询了,
    但是依然有个问题,我们从select那里仅仅知道了,有I/O事件发生了,
    却并不知道是哪那几个流(可能有一个,多个,甚至全部),
    我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,
    对他们进行操作。所以select具有O(n)的无差别轮询复杂度,
    同时处理的流越多,无差别轮询时间就越长。

    epoll可以理解为event poll,不同于忙轮询和无差别轮询,
    epoll会把哪个流发生了怎样的I/O事件通知我们。
    所以我们说epoll实际上是事件驱动(每个事件关联上fd)的,此时我们对这些流的操作都是有意义的。
    (复杂度降低到了O(1))
    可以看到,select和epoll最大的区别就是:select只是告诉你一定数目的流有事件了,
    至于哪个流有事件,还得你一个一个地去轮询,而epoll会把发生的事件告诉你,
    通过发生的事件,就自然而然定位到哪个流了。不能不说epoll跟select相比,是质的飞跃,我觉得这也是一种牺牲空间,
    换取时间的思想,

    Asynchronous I/O

    linux下的asynchronous IO其实用得很少。先看一下它的流程:

     

    用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

    到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
    先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

    在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
        A synchronous I/O operation causes the requesting process to be blocked until that I/O operation completes;
        An asynchronous I/O operation does not cause the requesting process to be blocked;
    两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

    各个IO Model的比较如图所示:

    经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

    最后,再举几个不是很恰当的例子来说明这四个IO Model:
    有A,B,C,D四个人在钓鱼:
    A用的是最老式的鱼竿,所以呢,得一直守着,等到鱼上钩了再拉杆;
    B的鱼竿有个功能,能够显示是否有鱼上钩,所以呢,B就和旁边的MM聊天,隔会再看看有没有鱼上钩,有的话就迅速拉杆;
    C用的鱼竿和B差不多,但他想了一个好办法,就是同时放好几根鱼竿,然后守在旁边,一旦有显示说鱼上钩了,它就将对应的鱼竿拉起来;
    D是个有钱人,干脆雇了一个人帮他钓鱼,一旦那个人把鱼钓上来了,就给D发个短信。

    I/O多路复用中的select、poll、epoll的区别

    epoll跟select都能提供多路I/O复用的解决方案。在现在的Linux内核里都能够支持,其中epoll是Linux所特有,而select则是POSIX所规定,一般操作系统(包括Windows–Windows也兼容POSIX的较老标准)均有实现。
    select:select本质上是通过设置或者检查存放fd标志位的数据结构来进行下一步处理。单个进程可监视的fd数量被限制、对socket进行扫描时是采用轮询的方法导致效率较低。
    poll:poll本质上和select没有区别,但没有最大连接数的限制因为它是基于链表来存储的。
    epoll: epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知。因为epoll没有最大并发连接的限制、只有活跃可用的FD才会调用callback函数使得效率提升、使用mmap内存映射减少复制开销。
  • 相关阅读:
    element-ui 中 el-table 根据scope.row行数据变化动态显示行内控件
    vue.js 父组件主动获取子组件的数据和方法、子组件主动获取父组件的数据和方法
    把json1赋值给json2,修改json2的属性,json1的属性也一起变化
    win10下当前目录右键添加CMD快捷方式
    element-ui
    vscode 头部注释插件
    IE浏览器new Date()带参返回NaN解决方法
    常用css
    使用DataGridView控件显示数据
    第四章 ADO.NET
  • 原文地址:https://www.cnblogs.com/zyy1688/p/10729842.html
Copyright © 2011-2022 走看看