现在有一批数据如下(表名detectOriginalData):
{ "_id" : "760c29a2720ead1681184dfbef0aaae4", "imgSavePath" : "/opt/temp/face/publicceaf441cf933bba310e4.JPG", "faceDetail" : { "face_token" : "760c29a2720ead1681184dfbef0aaae4", "location" : { "left" : 110.04, "top" : 244.39, "width" : 311.0, "height" : 263.0, "rotation" : -2 } }, "cdt" : ISODate("2020-12-25T10:53:43.647+08:00") }
现在,我们要统计faceDetail.location.width,找出width处于300-400之间,每隔10分一段(也就是300-310、310-320...390-400共10组),之间的faceToken和imgSavePath都有哪些
最后实现的一种为:
db.detectOriginalData.aggregate([ {$match: {"faceDetail.location.width": {$lte: 400, $gte: 300}}}, {$project: {val: "$faceDetail.location.width", ftk: "$faceDetail.face_token", imgPath: "$imgSavePath"}}, {$group: { "_id": { $subtract: [ {$subtract: ["$val", 0]}, {$mod: [{$subtract: ["$val", 0]}, 10]} ] }, ftkList: {$push: "$ftk"}, imgList: {$push: "$imgPath"}, ftkCount: {$sum: 1} }}, {$sort: {_id: -1}} ])
下面为开始用的绕了弯路的一种实现方式,可以忽略。。。
db.detectOriginalData.aggregate([ {$match: {"faceDetail.location.width": {$lte: 400, $gte: 300}}}, {$project: {val: "$faceDetail.location.width", ftk: "$faceDetail.face_token"}}, {$lookup:{ from:"detectOriginalData", localField:"ftk", foreignField: "_id", as: "img"} }, {$project: {val: 1, ftk: 1, imgPath: "$img.imgSavePath"}}, {$unwind: "$imgPath"}, {$group: { "_id": { $subtract: [ {$subtract: ["$val", 0]}, {$mod: [{$subtract: ["$val", 0]}, 10]} ] }, ftkList: {$push: "$ftk"}, imgList: {$push: "$imgPath"}, ftkCount: {$sum: 1} }}, {$sort: {_id: -1}} ])
最后的结果如下(_id=320,代表width处于320-330之间的数据):
************2021-01-19 新增,测试小伙伴提了个统计需求。。。。。。
先看统计数据关联的另一张表(过滤详情表detectFilterDetail),大概数据结构如下(只截取部分字段):
{ "_id" : ObjectId("5feaa27fd873663e8085507d"), "faceToken" : "2268048d7df15fa15652cc745261404e", "paramRecordId" : "5feaa273d873663e80855047", "paramBoolean" : { "ageMax" : true, "ageMin" : true, "qualityBlur" : true, "qualityOcclusionMouth" : true, "locationWidthMin" : false, "locationHeightMin" : false }, "filterCount" : 2, "filterKey" : [ "locationWidthMin", "locationHeightMin" ], "cdt" : ISODate("2020-12-29T11:29:03.651+08:00") }
现在是想要统计,detectFilterDetail表的detectFilterDetail.paramBoolean.qualityOcclusionMouse为true的分布,也就是和上一个统计一样,统计每个分段里面,为true的数量有多少
琢磨了一会,大概实现sql如下:
db.detectFilterDetail.aggregate([ {$match: {"paramRecordId": "5feaa273d873663e80855047", "paramBoolean.qualityOcclusionMouth": true}}, {$project: {flag: "$paramBoolean.qualityOcclusionMouth", ftk: "$faceToken"}}, {$lookup:{ from:"detectOriginalData", localField:"ftk", foreignField: "_id", as: "f_ftk"} }, {$project: {flag: 1, ftk: 1, val: "$f_ftk.faceDetail.quality.occlusion.mouth"}}, {$unwind: "$val"}, {$group: { "_id": { $subtract: [ {$subtract: ["$val", 0]}, {$mod: [{$subtract: ["$val", 0]}, 0.1]} ] }, ftkList: {$push: "$ftk"}, ftkCount: {$sum: 1} }}, //{$group: {"_id": null, count: {$sum: 1}}} {$sort: {_id: -1}} ])
结果如下:
PS:暂时做个记录,后续再稍微解释各个语句的大概作用