zoukankan      html  css  js  c++  java
  • Linux时间子系统之五:低分辨率定时器的原理和实现【转】

    本文转载自:http://blog.csdn.net/droidphone/article/details/8051405

    利用定时器,我们可以设定在未来的某一时刻,触发一个特定的事件。所谓低分辨率定时器,是指这种定时器的计时单位基于jiffies值的计数,也就是说,它的精度只有1/HZ,假如你的内核配置的HZ是1000,那意味着系统中的低分辨率定时器的精度就是1ms。早期的内核版本中,内核并不支持高精度定时器,理所当然只能使用这种低分辨率定时器,我们有时候把这种基于HZ的定时器机制成为时间轮:time wheel。虽然后来出现了高分辨率定时器,但它只是内核的一个可选配置项,所以直到目前最新的内核版本,这种低分辨率定时器依然被大量地使用着。
    /*****************************************************************************************************/
    声明:本博内容均由http://blog.csdn.NET/droidphone原创,转载请注明出处,谢谢!
    /*****************************************************************************************************/

    1.  定时器的使用方法

    在讨论定时器的实现原理之前,我们先看看如何使用定时器。要在内核编程中使用定时器,首先我们要定义一个time_list结构,该结构在include/Linux/timer.h中定义:

    [cpp] view plain copy
     
    1. struct timer_list {  
    2.     /* 
    3.      * All fields that change during normal runtime grouped to the 
    4.      * same cacheline 
    5.      */  
    6.     struct list_head entry;  
    7.     unsigned long expires;  
    8.     struct tvec_base *base;  
    9.   
    10.     void (*function)(unsigned long);  
    11.     unsigned long data;  
    12.   
    13.     int slack;  
    14.         ......  
    15. };  

    entry  字段用于把一组定时器组成一个链表,至于内核如何对定时器进行分组,我们会在后面进行解释。

    expires  字段指出了该定时器的到期时刻,也就是期望定时器到期时刻的jiffies计数值。

    base  每个cpu拥有一个自己的用于管理定时器的tvec_base结构,该字段指向该定时器所属的cpu所对应tvec_base结构。

    function  字段是一个函数指针,定时器到期时,系统将会调用该回调函数,用于响应该定时器的到期事件。

    data  该字段用于上述回调函数的参数。

    slack  对有些对到期时间精度不太敏感的定时器,到期时刻允许适当地延迟一小段时间,该字段用于计算每次延迟的HZ数。

    要定义一个timer_list,我们可以使用静态和动态两种办法,静态方法使用DEFINE_TIMER宏:

    #define DEFINE_TIMER(_name, _function, _expires, _data)

    该宏将得到一个名字为_name,并分别用_function,_expires,_data参数填充timer_list的相关字段。

    如果要使用动态的方法,则可以自己声明一个timer_list结构,然后手动初始化它的各个字段:

    [cpp] view plain copy
     
    1. struct timer_list timer;  
    2. ......  
    3. init_timer(&timer);  
    4. timer.function = _function;  
    5. timer.expires = _expires;  
    6. timer.data = _data;  

    要激活一个定时器,我们只要调用add_timer即可:

    [cpp] view plain copy
     
    1. add_timer(&timer);  


    要修改定时器的到期时间,我们只要调用mod_timer即可:

    [cpp] view plain copy
     
    1. mod_timer(&timer, jiffies+50);  

    要移除一个定时器,我们只要调用del_timer即可:

    [cpp] view plain copy
     
    1. del_timer(&timer);  

    定时器系统还提供了以下这些API供我们使用:

    • void add_timer_on(struct timer_list *timer, int cpu);  // 在指定的cpu上添加定时器
    • int mod_timer_pending(struct timer_list *timer, unsigned long expires);  //  只有当timer已经处在激活状态时,才修改timer的到期时刻
    • int mod_timer_pinned(struct timer_list *timer, unsigned long expires);  //  当
    • void set_timer_slack(struct timer_list *time, int slack_hz);  //  设定timer允许的到期时刻的最大延迟,用于对精度不敏感的定时器
    • int del_timer_sync(struct timer_list *timer);  //  如果该timer正在被处理中,则等待timer处理完成才移除该timer

    2.  定时器的软件架构

    低分辨率定时器是基于HZ来实现的,也就是说,每个tick周期,都有可能有定时器到期,关于tick如何产生,请参考:Linux时间子系统之四:定时器的引擎:clock_event_device。系统中有可能有成百上千个定时器,难道在每个tick中断中遍历一下所有的定时器,检查它们是否到期?内核当然不会使用这么笨的办法,它使用了一个更聪明的办法:按定时器的到期时间对定时器进行分组。因为目前的多核处理器使用越来越广泛,连智能手机的处理器动不动就是4核心,内核对多核处理器有较好的支持,低分辨率定时器在实现时也充分地考虑了多核处理器的支持和优化。为了较好地利用cache line,也为了避免cpu之间的互锁,内核为多核处理器中的每个cpu单独分配了管理定时器的相关数据结构和资源,每个cpu独立地管理属于自己的定时器。

    2.1  定时器的分组

    首先,内核为每个cpu定义了一个tvec_base结构指针:

    [cpp] view plain copy
     
    1. static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;  

    tvec_base结构的定义如下:

    [cpp] view plain copy
     
    1. struct tvec_base {  
    2.     spinlock_t lock;  
    3.     struct timer_list *running_timer;  
    4.     unsigned long timer_jiffies;  
    5.     unsigned long next_timer;  
    6.     struct tvec_root tv1;  
    7.     struct tvec tv2;  
    8.     struct tvec tv3;  
    9.     struct tvec tv4;  
    10.     struct tvec tv5;  
    11. } ____cacheline_aligned;  

    running_timer  该字段指向当前cpu正在处理的定时器所对应的timer_list结构。

    timer_jiffies  该字段表示当前cpu定时器所经历过的jiffies数,大多数情况下,该值和jiffies计数值相等,当cpu的idle状态连续持续了多个jiffies时间时,当退出idle状态时,jiffies计数值就会大于该字段,在接下来的tick中断后,定时器系统会让该字段的值追赶上jiffies值。

    next_timer  该字段指向该cpu下一个即将到期的定时器。

    tv1--tv5  这5个字段用于对定时器进行分组,实际上,tv1--tv5都是一个链表数组,其中tv1的数组大小为TVR_SIZE, tv2 tv3 tv4 tv5的数组大小为TVN_SIZE,根据CONFIG_BASE_SMALL配置项的不同,它们有不同的大小:

    [cpp] view plain copy
     
    1. #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)  
    2. #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)  
    3. #define TVN_SIZE (1 << TVN_BITS)  
    4. #define TVR_SIZE (1 << TVR_BITS)  
    5. #define TVN_MASK (TVN_SIZE - 1)  
    6. #define TVR_MASK (TVR_SIZE - 1)  
    7.   
    8. struct tvec {  
    9.     struct list_head vec[TVN_SIZE];  
    10. };  
    11.   
    12. struct tvec_root {  
    13.     struct list_head vec[TVR_SIZE];  
    14. };  

    默认情况下,没有使能CONFIG_BASE_SMALL,TVR_SIZE的大小是256,TVN_SIZE的大小则是64,当需要节省内存空间时,也可以使能CONFIG_BASE_SMALL,这时TVR_SIZE的大小是64,TVN_SIZE的大小则是16,以下的讨论我都是基于没有使能CONFIG_BASE_SMALL的情况。当有一个新的定时器要加入时,系统根据定时器到期的jiffies值和timer_jiffies字段的差值来决定该定时器被放入tv1至tv5中的哪一个数组中,最终,系统中所有的定时器的组织结构如下图所示:

                                                            图 2.1.1  定时器在系统中的组织结构

    2.2  定时器的添加

    要加入一个新的定时器,我们可以通过api函数add_timer或mod_timer来完成,最终的工作会交由internal_add_timer函数来处理。该函数按以下步骤进行处理:

    • 计算定时器到期时间和所属cpu的tvec_base结构中的timer_jiffies字段的差值,记为idx;
    • 根据idx的值,选择该定时器应该被放到tv1--tv5中的哪一个链表数组中,可以认为tv1-tv5分别占据一个32位数的不同比特位,tv1占据最低的8位,tv2占据紧接着的6位,然后tv3再占位,以此类推,最高的6位分配给tv5。最终的选择规则如下表所示:
    链表数组idx范围
    tv1 0-255(2^8)
    tv2 256--16383(2^14)
    tv3 16384--1048575(2^20)
    tv4 1048576--67108863(2^26)
    tv5 67108864--4294967295(2^32)

    确定链表数组后,接着要确定把该定时器放入数组中的哪一个链表中,如果时间差idx小于256,按规则要放入tv1中,因为tv1包含了256个链表,所以可以简单地使用timer_list.expires的低8位作为数组的索引下标,把定时器链接到tv1中相应的链表中即可。如果时间差idx的值在256--18383之间,则需要把定时器放入tv2中,同样的,使用timer_list.expires的8--14位作为数组的索引下标,把定时器链接到tv2中相应的链表中,。定时器要加入tv3 tv4 tv5使用同样的原理。经过这样分组后的定时器,在后续的tick事件中,系统可以很方便地定位并取出相应的到期定时器进行处理。以上的讨论都体现在internal_add_timer的代码中:

    [cpp] view plain copy
     
    1. static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)  
    2. {  
    3.     unsigned long expires = timer->expires;  
    4.     unsigned long idx = expires - base->timer_jiffies;  
    5.     struct list_head *vec;  
    6.   
    7.     if (idx < TVR_SIZE) {  
    8.         int i = expires & TVR_MASK;  
    9.         vec = base->tv1.vec + i;  
    10.     } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {  
    11.         int i = (expires >> TVR_BITS) & TVN_MASK;  
    12.         vec = base->tv2.vec + i;  
    13.     } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {  
    14.         int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;  
    15.         vec = base->tv3.vec + i;  
    16.     } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {  
    17.         int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;  
    18.         vec = base->tv4.vec + i;  
    19.     } else if ((signed long) idx < 0) {  
    20.                 ......  
    21.     } else {  
    22.                 ......  
    23.         i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;  
    24.         vec = base->tv5.vec + i;  
    25.     }  
    26.     list_add_tail(&timer->entry, vec);  
    27. }  

    2.2  定时器的到期处理

    经过2.1节的处理后,系统中的定时器按到期时间有规律地放置在tv1--tv5各个链表数组中,其中tv1中放置着在接下来的256个jiffies即将到期的定时器列表,需要注意的是,并不是tv1.vec[0]中放置着马上到期的定时器列表,tv1.vec[1]中放置着将在jiffies+1到期的定时器列表。因为base.timer_jiffies的值一直在随着系统的运行而动态地增加,原则上是每个tick事件会加1,base.timer_jiffies代表者该cpu定时器系统当前时刻,定时器也是动态地加入头256个链表tv1中,按2.1节的讨论,定时器加入tv1中使用的下标索引是定时器到期时间expires的低8位,所以假设当前的base.timer_jiffies值是0x34567826,则马上到期的定时器是在tv1.vec[0x26]中,如果这时候系统加入一个在jiffies值0x34567828到期的定时器,他将会加入到tv1.vec[0x28]中,运行两个tick后,base.timer_jiffies的值会变为0x34567828,很显然,在每次tick事件中,定时器系统只要以base.timer_jiffies的低8位作为索引,取出tv1中相应的链表,里面正好包含了所有在该jiffies值到期的定时器列表。

    那什么时候处理tv2--tv5中的定时器?每当base.timer_jiffies的低8位为0值时,这表明base.timer_jiffies的第8-13位有进位发生,这6位正好代表着tv2,这时只要按base.timer_jiffies的第8-13位的值作为下标,移出tv2中对应的定时器链表,然后用internal_add_timer把它们从新加入到定时器系统中来,因为这些定时器一定会在接下来的256个tick期间到期,所以它们肯定会被加入到tv1数组中,这样就完成了tv2往tv1迁移的过程。同样地,当base.timer_jiffies的第8-13位为0时,这表明base.timer_jiffies的第14-19位有进位发生,这6位正好代表着tv3,按base.timer_jiffies的第14-19位的值作为下标,移出tv3中对应的定时器链表,然后用internal_add_timer把它们从新加入到定时器系统中来,显然它们会被加入到tv2中,从而完成tv3到tv2的迁移,tv4,tv5的处理可以以此作类推。具体迁移的代码如下,参数index为事先计算好的高一级tv的需要迁移的数组索引:

    [cpp] view plain copy
     
    1. static int cascade(struct tvec_base *base, struct tvec *tv, int index)  
    2. {  
    3.     /* cascade all the timers from tv up one level */  
    4.     struct timer_list *timer, *tmp;  
    5.     struct list_head tv_list;  
    6.   
    7.     list_replace_init(tv->vec + index, &tv_list);  //  移除需要迁移的链表  
    8.   
    9.     /* 
    10.      * We are removing _all_ timers from the list, so we 
    11.      * don't have to detach them individually. 
    12.      */  
    13.     list_for_each_entry_safe(timer, tmp, &tv_list, entry) {  
    14.         BUG_ON(tbase_get_base(timer->base) != base);  
    15.                 //  重新加入到定时器系统中,实际上将会迁移到下一级的tv数组中  
    16.         internal_add_timer(base, timer);    
    17.     }  
    18.   
    19.     return index;  
    20. }  

    每个tick事件到来时,内核会在tick定时中断处理期间激活定时器软中断:TIMER_SOFTIRQ,关于软件中断,请参考另一篇博文:Linux中断(interrupt)子系统之五:软件中断(softIRQ。TIMER_SOFTIRQ的执行函数是__run_timers,它实现了本节讨论的逻辑,取出tv1中到期的定时器,执行定时器的回调函数,由此可见,低分辨率定时器的回调函数是执行在软件中断上下文中的,这点在写定时器的回调函数时需要注意。__run_timers的代码如下:

    [cpp] view plain copy
     
    1. static inline void __run_timers(struct tvec_base *base)  
    2. {  
    3.     struct timer_list *timer;  
    4.   
    5.     spin_lock_irq(&base->lock);  
    6.         /* 同步jiffies,在NO_HZ情况下,base->timer_jiffies可能落后不止一个tick  */  
    7.     while (time_after_eq(jiffies, base->timer_jiffies)) {    
    8.         struct list_head work_list;  
    9.         struct list_head *head = &work_list;  
    10.                 /*  计算到期定时器链表在tv1中的索引  */  
    11.         int index = base->timer_jiffies & TVR_MASK;    
    12.   
    13.         /* 
    14.          * /*  tv2--tv5定时器列表迁移处理  */  
    15.          */  
    16.         if (!index &&  
    17.             (!cascade(base, &base->tv2, INDEX(0))) &&                
    18.                 (!cascade(base, &base->tv3, INDEX(1))) &&        
    19.                     !cascade(base, &base->tv4, INDEX(2)))    
    20.             cascade(base, &base->tv5, INDEX(3));    
    21.                 /*  该cpu定时器系统运行时间递增一个tick  */                   
    22.         ++base->timer_jiffies;    
    23.                 /*  取出到期的定时器链表  */                                         
    24.         list_replace_init(base->tv1.vec + index, &work_list);  
    25.                 /*  遍历所有的到期定时器  */            
    26.         while (!list_empty(head)) {                                      
    27.             void (*fn)(unsigned long);  
    28.             unsigned long data;  
    29.   
    30.             timer = list_first_entry(head, struct timer_list,entry);  
    31.             fn = timer->function;  
    32.             data = timer->data;  
    33.   
    34.             timer_stats_account_timer(timer);  
    35.   
    36.             base->running_timer = timer;    /*  标记正在处理的定时器  */  
    37.             detach_timer(timer, 1);  
    38.   
    39.             spin_unlock_irq(&base->lock);  
    40.             call_timer_fn(timer, fn, data);  /*  调用定时器的回调函数  */  
    41.             spin_lock_irq(&base->lock);  
    42.         }  
    43.     }  
    44.     base->running_timer = NULL;  
    45.     spin_unlock_irq(&base->lock);  
    46. }  

    通过上面的讨论,我们可以发现,内核的低分辨率定时器的实现非常精妙,既实现了大量定时器的管理,又实现了快速的O(1)查找到期定时器的能力,利用巧妙的数组结构,使得只需在间隔256个tick时间才处理一次迁移操作,5个数组就好比是5个齿轮,它们随着base->timer_jifffies的增长而不停地转动,每次只需处理第一个齿轮的某一个齿节,低一级的齿轮转动一圈,高一级的齿轮转动一个齿,同时自动把即将到期的定时器迁移到上一个齿轮中,所以低分辨率定时器通常又被叫做时间轮:time wheel。事实上,它的实现是一个很好的空间换时间软件算法。

    3.  定时器软件中断

    系统初始化时,start_kernel会调用定时器系统的初始化函数init_timers:

    [cpp] view plain copy
     
    1. void __init init_timers(void)  
    2. {        
    3.     int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,   
    4.                 (void *)(long)smp_processor_id());  
    5.   
    6.     init_timer_stats();  
    7.   
    8.     BUG_ON(err != NOTIFY_OK);  
    9.     register_cpu_notifier(&timers_nb);  /* 注册cpu notify,以便在hotplug时在cpu之间进行定时器的迁移 */  
    10.     open_softirq(TIMER_SOFTIRQ, run_timer_softirq);  
    11. }  

    可见,open_softirq把run_timer_softirq注册为TIMER_SOFTIRQ的处理函数,另外,当cpu的每个tick事件到来时,在事件处理中断中,update_process_times会被调用,该函数会进一步调用run_local_timers,run_local_timers会触发TIMER_SOFTIRQ软中断:

    [cpp] view plain copy
     
    1. void run_local_timers(void)  
    2. {  
    3.     hrtimer_run_queues();  
    4.     raise_softirq(TIMER_SOFTIRQ);  
    5. }  

    TIMER_SOFTIRQ的处理函数是run_timer_softirq:

    [cpp] view plain copy
     
    1. static void run_timer_softirq(struct softirq_action *h)  
    2. {  
    3.     struct tvec_base *base = __this_cpu_read(tvec_bases);  
    4.   
    5.     hrtimer_run_pending();  
    6.   
    7.     if (time_after_eq(jiffies, base->timer_jiffies))  
    8.         __run_timers(base);  
    9. }  

    好啦,终于看到__run_timers函数了,2.2节已经介绍过,正是这个函数完成了对到期定时器的处理工作,也完成了时间轮的不停转动。

  • 相关阅读:
    练习题
    作业2.6-2.15 两次作业
    11.13(2)
    11.13
    11.6
    10.30
    10.15
    10.9
    9.25号作业
    9.18号
  • 原文地址:https://www.cnblogs.com/zzb-Dream-90Time/p/7083991.html
Copyright © 2011-2022 走看看