zoukankan      html  css  js  c++  java
  • xx

    新闻推荐系统的方案:

    新闻(这里的新闻除了包括传统的新闻外,还指博客、微博、rss feed等,因为它们具有以下的共性)推荐方面的工作:

    Google News的个性化:Personalized News Recommendation Based on Click Behavior 展示了如何考虑领域特点和数据特点,有效改进推荐系统//Google News Personalization: Scalable Online Collaborative Filtering// 

      Google的第一篇文章,也可以看做他们做新闻推荐的第一个阶段,是一个从无到有的过程。他们采用了三种方法做推荐,LSH/Minhash, PLSI 和co-visition。前两种都是用于聚类,把每一个用户都分到他所属的类中,然后将该类用户的集体点击行为聚合在一起,作为对当前用户的推荐。
    Co-visition就是一种item-based的推荐方法,通过发行item之间的关联性来做推荐。可以看到,在这一阶段,他们最关心的是可扩展性
    scalability的问题,LSH/Minhash是很快速并且很容易并行化的方法;而PLSI又在各领域表现不俗,因而他们也实现了
    mapreduce版本,并用到新闻推荐里面来。最后的实验表明,这3种方法综合运用起来能取得最好的结果,比向用户推荐popular的新闻提高了
    38%。后来Amazon出来的Greg评价说这个数值,比他们在电子商务中用CF来做推荐相对于推荐流行商品,提高的要少得多。我想这可能跟算法有一定关系,但也跟两个领域不同相关,因为在新闻领域,由于用户对热门流行的需求相对较强,所以popular的方法效果不会很差,因此在这个基础上提高38%
    也算不错的结果了。

            今年IUI上他们的这篇paper,可以看作是第二阶段。针对新闻领域自身的特点,直接用前面的协同过滤解决不了的时候,对原有算法做的补充和增强。新闻领域有如下几个特点:一是新闻这种 item的时效性很强,更新速度快。比如一个大的新闻网站,新闻条目的总数和Amazon上商品的总数是差不多的,但是新闻条目的更新速度是远远快于商品的,即它的生命周期非常短,可能只有几个小时或几天。这对推荐系统的性能架构和推荐质量(用户满意度)都提出了更高的要求。随之而来就产生了first rater问题,即一则新的新闻,可能才出来的一段时间,浏览点击的人非常少或基本没有,这样一般推荐算法就推不出来;如果等到数据积累够了,可能已经过了若干小时了。二是新闻领域里的用户—读者,更容易受流行和热门的item影响。因为毕竟大家都对当时当地的热点事件很好奇,而且点击一则热门新闻的成本显然比购买一本流行书的成本低很多。因此,如果一则新闻非常流行,很多人都去看,就像大家的购物篮里面都有这个东西一样,计算和其他item的相关性时,它就很占便宜,往往容易被推荐出来。

  • 相关阅读:
    在IE和Firfox获取keycode
    using global variable in android extends application
    using Broadcast Receivers to listen outgoing call in android note
    help me!virtual keyboard issue
    using iscroll.js and iscroll jquery plugin in android webview to scroll div and ajax load data.
    javascript:jquery.history.js使用方法
    【CSS核心概念】弹性盒子布局
    【Canvas学习笔记】基础篇(二)
    【JS核心概念】数据类型以及判断方法
    【问题记录】ElementUI上传组件使用beforeupload钩子校验失败时的问题处理
  • 原文地址:https://www.cnblogs.com/zzblee/p/4015082.html
Copyright © 2011-2022 走看看