很神奇的一道题目。。。
解法一
设 (F(x)) 表示无向连通图个数, (G(x)) 表示无像图个数。
显然 (G(n)=2^{inom{n}{2}}) ,就是枚举每一条边选不选。
枚举与 (1) 相连的联通块大小可得
[G(n)=sum_{i=1}^{n}inom{n-1}{i-1}F(i)G(n-i)\
dfrac{2^{inom{n}{2}}}{(n-1)!}=sum_{i=1}^{n}dfrac{F(i)}{(i-1)!}dfrac{2^{inom{n-i}{2}}}{(n-i)!}\
G(x)=F(x)*H(x)\
F(x)=G(x)*H^{-1}(x)
]
拉板子吼啊!
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define mkp(x,y) make_pair(x,y)
#define pb(x) push_back(x)
#define sz(v) (int)v.size()
typedef long long LL;
typedef double db;
template<class T>bool ckmax(T&x,T y){return x<y?x=y,1:0;}
template<class T>bool ckmin(T&x,T y){return x>y?x=y,1:0;}
#define rep(i,x,y) for(int i=x,i##end=y;i<=i##end;++i)
#define per(i,x,y) for(int i=x,i##end=y;i>=i##end;--i)
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=0;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f?x:-x;
}
#define mod 1004535809
const int N=130005;
const int M=N<<2;
namespace math{
int inv[N],fac[N],ifc[N];
inline int qpow(int n,int k){int res=1;for(;k;k>>=1,n=1ll*n*n%mod)if(k&1)res=1ll*n*res%mod;return res;}
inline void fmod(int&x){x-=mod,x+=x>>31&mod;}
void initmath(const int n=N-1){
inv[1]=1;for(int i=2;i<=n;++i)inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
fac[0]=1;for(int i=1;i<=n;++i)fac[i]=1ll*fac[i-1]*i%mod;
ifc[n]=qpow(fac[n],mod-2);for(int i=n-1;i>=0;--i)ifc[i]=1ll*(i+1)*ifc[i+1]%mod;
}
}
using math::qpow;
using math::fmod;
namespace poly{
int rev[M],lg,lim;
void init_poly(const int&n){
for(lim=1,lg=0;lim<n;lim<<=1,++lg);
for(int i=0;i<lim;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1));
}
void NTT(int*a,int op){
for(int i=0;i<lim;++i)
if(i>rev[i])swap(a[i],a[rev[i]]);
const int g=op?3:math::inv[3];
for(int i=1;i<lim;i<<=1){
const int wn=qpow(g,(mod-1)/(i<<1));
for(int j=0;j<lim;j+=i<<1){
int w0=1;
for(int k=0;k<i;++k,w0=1ll*w0*wn%mod){
const int X=a[j+k],Y=1ll*w0*a[i+j+k]%mod;
fmod(a[j+k]=X+Y),fmod(a[i+j+k]=X-Y+mod);
}
}
}
if(op)return;int ilim=qpow(lim,mod-2);
for(int i=0;i<lim;++i)a[i]=1ll*a[i]*ilim%mod;
}
#define clr(a,n) memset(a,0,sizeof(int)*(n))
#define cpy(a,b,n) memcpy(a,b,sizeof(int)*(n))
void poly_mul(int*f,int*g,int*ans,int n,int m){
static int A[M],B[M];init_poly(n+m);
cpy(A,f,n),clr(A+n,lim-n),NTT(A,1);
cpy(B,g,m),clr(B+m,lim-m),NTT(B,1);
for(int i=0;i<lim;++i)ans[i]=1ll*A[i]*B[i]%mod;
NTT(ans,0);
}
void poly_inv(int*g,int*f,int n){
static int A[M];
if(n==1)return g[0]=qpow(f[0],mod-2),void();
poly_inv(g,f,(n+1)>>1);
init_poly(n<<1);
cpy(A,f,n),clr(A+n,lim-n),clr(g+n,lim-n);
NTT(A,1),NTT(g,1);
for(int i=0;i<lim;++i)g[i]=1ll*g[i]*(2-1ll*A[i]*g[i]%mod+mod)%mod;
NTT(g,0),clr(g+n,lim-n);
}
}
int A[M],B[M],C[M],n,ans[M];
signed main(){
math::initmath();
n=read();
for(int i=1;i<=n;++i)A[i]=1ll*qpow(2,1ll*i*(i-1)/2%(mod-1))*math::ifc[i-1]%mod;
for(int i=0;i<=n;++i)B[i]=1ll*qpow(2,1ll*i*(i-1)/2%(mod-1))*math::ifc[i]%mod;
poly::poly_inv(C,B,n+1);
poly::poly_mul(A,C,ans,n+1,n+1);
printf("%lld
",1ll*ans[n]*math::fac[n-1]%mod);
return 0;
}
解法二
这个才是写这篇题解的原因。
(exp) 是有组合意义的!!!
把 (F(x)) 当作组成集合的元素,那么 (exp (F(x))=sum dfrac{F(x)^i}{i!}) ,就是不断和自己卷积同时除掉标号,也就是生成集合。
回到这题,令 (F(x)) 表示无向连通图的生成函数,(G(x)) 表示无向图个数。
有 ([x^n]G(x)=dfrac{2^{inom{n}{2}}}{n!}) 。如果把无向图看作集合,无向连通图就是组成它的元素。由于是 ( m EGF) 要手动除一个阶乘下去,别忘了最后乘回来。
所以 (exp(F(x))=G(x)) !!!
两边取 (ln) ,(F(x)=ln(G(x))) 。取个 (ln) 就完事了。
拉板子吼啊!
诶?我的 (ln) (exp) 开根快速幂怎么都没了
草,昨天手残删掉了,现在断网了。
算了算了,手敲
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define mkp(x,y) make_pair(x,y)
#define pb(x) push_back(x)
#define sz(v) (int)v.size()
typedef long long LL;
typedef double db;
template<class T>bool ckmax(T&x,T y){return x<y?x=y,1:0;}
template<class T>bool ckmin(T&x,T y){return x>y?x=y,1:0;}
#define rep(i,x,y) for(int i=x,i##end=y;i<=i##end;++i)
#define per(i,x,y) for(int i=x,i##end=y;i>=i##end;--i)
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=0;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f?x:-x;
}
#define mod 1004535809
const int N=130005;
const int M=N<<2;
namespace math{
int inv[N],fac[N],ifc[N];
inline int qpow(int n,int k){int res=1;for(;k;k>>=1,n=1ll*n*n%mod)if(k&1)res=1ll*n*res%mod;return res;}
inline void fmod(int&x){x-=mod,x+=x>>31&mod;}
void initmath(const int n=N-1){
inv[1]=1;for(int i=2;i<=n;++i)inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
fac[0]=1;for(int i=1;i<=n;++i)fac[i]=1ll*fac[i-1]*i%mod;
ifc[n]=qpow(fac[n],mod-2);for(int i=n-1;i>=0;--i)ifc[i]=1ll*(i+1)*ifc[i+1]%mod;
}
}
using math::qpow;
using math::fmod;
namespace poly{
int rev[M],lg,lim;
void init_poly(const int&n){
for(lim=1,lg=0;lim<n;lim<<=1,++lg);
for(int i=0;i<lim;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1));
}
void NTT(int*a,int op){
for(int i=0;i<lim;++i)
if(i>rev[i])swap(a[i],a[rev[i]]);
const int g=op?3:math::inv[3];
for(int i=1;i<lim;i<<=1){
const int wn=qpow(g,(mod-1)/(i<<1));
for(int j=0;j<lim;j+=i<<1){
int w0=1;
for(int k=0;k<i;++k,w0=1ll*w0*wn%mod){
const int X=a[j+k],Y=1ll*w0*a[i+j+k]%mod;
fmod(a[j+k]=X+Y),fmod(a[i+j+k]=X-Y+mod);
}
}
}
if(op)return;int ilim=qpow(lim,mod-2);
for(int i=0;i<lim;++i)a[i]=1ll*a[i]*ilim%mod;
}
#define clr(a,n) memset(a,0,sizeof(int)*(n))
#define cpy(a,b,n) memcpy(a,b,sizeof(int)*(n))
void poly_mul(int*f,int*g,int*ans,int n,int m){
static int A[M],B[M];init_poly(n+m);
cpy(A,f,n),clr(A+n,lim-n),NTT(A,1);
cpy(B,g,m),clr(B+m,lim-m),NTT(B,1);
for(int i=0;i<lim;++i)ans[i]=1ll*A[i]*B[i]%mod;
NTT(ans,0);
}
void poly_inv(int*g,int*f,int n){
static int A[M];
if(n==1)return g[0]=qpow(f[0],mod-2),void();
poly_inv(g,f,(n+1)>>1);
init_poly(n<<1);
cpy(A,f,n),clr(A+n,lim-n),clr(g+n,lim-n);
NTT(A,1),NTT(g,1);
for(int i=0;i<lim;++i)g[i]=1ll*g[i]*(2-1ll*A[i]*g[i]%mod+mod)%mod;
NTT(g,0),clr(g+n,lim-n);
}
void dao(int*g,int*f,int n){
for(int i=0;i<n-1;++i)g[i]=1ll*f[i+1]*(i+1)%mod;g[n-1]=0;
}
void jif(int*g,int*f,int n){
for(int i=1;i<=n;++i)g[i]=1ll*f[i-1]*math::inv[i]%mod;g[0]=0;
}
void poly_ln(int*g,int*f,int n){
static int A[M],B[M];
dao(A,f,n),clr(B,n),poly_inv(B,f,n),poly_mul(A,B,A,n,n),jif(g,A,n);
}
}
int A[M],n,ans[M];
signed main(){
math::initmath();
n=read();
rep(i,0,n)A[i]=1ll*math::qpow(2,1ll*i*(i-1)/2%(mod-1))*math::ifc[i]%mod;
poly::poly_ln(ans,A,n+1);
printf("%lld
",1ll*ans[n]*math::fac[n]%mod);
return 0;
}
说句闲话:(ln) 调用了求逆但是跑得比求逆快(