zoukankan      html  css  js  c++  java
  • python常用模块

    一 time与datetime模块

    在Python中,通常有这几种方式来表示时间:

    • 时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
    • 格式化的时间字符串(Format String)
    • 结构化的时间(struct_time):struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天,夏令时)
    import time
    #--------------------------我们先以当前时间为准,让大家快速认识三种形式的时间
    print(time.time()) # 时间戳:1487130156.419527
    print(time.strftime("%Y-%m-%d %X")) #格式化的时间字符串:'2017-02-15 11:40:53'
    
    print(time.localtime()) #本地时区的struct_time
    print(time.gmtime())    #UTC时区的struct_time
    time.localtime([secs]):将一个时间戳转换为当前时区的struct_time。secs参数未提供,则以当前时间为准。
    time.gmtime([secs]):和localtime()方法类似,gmtime()方法是将一个时间戳转换为UTC时区(0时区)的struct_time。
    time.time():返回当前时间的时间戳。
    time.mktime(t):将一个struct_time转化为时间戳。
    time.sleep(secs):线程推迟指定的时间运行。单位为秒。
    time.asctime([t]):把一个表示时间的元组或者struct_time表示为这种形式:'Sun Oct 1 12:04:38 2017'。如果没有参数,将会将time.localtime()作为参数传入。
    time.ctime([secs]):把一个时间戳(按秒计算的浮点数)转化为time.asctime()的形式。如果参数未给或者为None的时候,将会默认time.time()为参数。它的作用相当于time.asctime(time.localtime(secs))。
    time.strftime(format[, t]):把一个代表时间的元组或者struct_time(如由time.localtime()和time.gmtime()返回)转化为格式化的时间字符串。如果t未指定,将传入time.localtime()。
    
    举例:time.strftime("%Y-%m-%d %X", time.localtime()) #输出'2017-10-01 12:14:23'
    time.strptime(string[, format]):把一个格式化时间字符串转化为struct_time。实际上它和strftime()是逆操作。
    
    举例:time.strptime('2017-10-3 17:54',"%Y-%m-%d %H:%M") #输出 time.struct_time(tm_year=2017, tm_mon=10, tm_mday=3, tm_hour=17, tm_min=54, tm_sec=0, tm_wday=1, tm_yday=276, tm_isdst=-1)
    View Code

    二 random模块

    import random
     
    print(random.random())#(0,1)----float    大于0且小于1之间的小数
     
    print(random.randint(1,3))  #[1,3]    大于等于1且小于等于3之间的整数
     
    print(random.randrange(1,3)) #[1,3)    大于等于1且小于3之间的整数
     
    print(random.choice([1,'23',[4,5]]))#1或者23或者[4,5]
     
    print(random.sample([1,'23',[4,5]],2))#列表元素任意2个组合
     
    print(random.uniform(1,3))#大于1小于3的小数,如1.927109612082716 
     
     
    item=[1,3,5,7,9]
    random.shuffle(item) #打乱item的顺序,相当于"洗牌"
    print(item)
    方法
    import random
    def make_code(n):
        res=''
        for i in range(n):
            s1=chr(random.randint(65,90))
            s2=str(random.randint(0,9))
            res+=random.choice([s1,s2])
        return res
    
    print(make_code(9))
    
    生成随机验证码
    生成随机验证码

    三 os模块

    os模块是与操作系统交互的一个接口

    os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
    os.chdir("dirname")  改变当前脚本工作目录;相当于shell下cd
    os.curdir  返回当前目录: ('.')
    os.pardir  获取当前目录的父目录字符串名:('..')
    os.makedirs('dirname1/dirname2')    可生成多层递归目录
    os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
    os.mkdir('dirname')    生成单级目录;相当于shell中mkdir dirname
    os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
    os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
    os.remove()  删除一个文件
    os.rename("oldname","newname")  重命名文件/目录
    os.stat('path/filename')  获取文件/目录信息
    os.sep    输出操作系统特定的路径分隔符,win下为"\",Linux下为"/"
    os.linesep    输出当前平台使用的行终止符,win下为"	
    ",Linux下为"
    "
    os.pathsep    输出用于分割文件路径的字符串 win下为;,Linux下为:
    os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
    os.system("bash command")  运行shell命令,直接显示
    os.environ  获取系统环境变量
    os.path.abspath(path)  返回path规范化的绝对路径
    os.path.split(path)  将path分割成目录和文件名二元组返回
    os.path.dirname(path)  返回path的目录。其实就是os.path.split(path)的第一个元素
    os.path.basename(path)  返回path最后的文件名。如何path以/或结尾,那么就会返回空值。即os.path.split(path)的第二个元素
    os.path.exists(path)  如果path存在,返回True;如果path不存在,返回False
    os.path.isabs(path)  如果path是绝对路径,返回True
    os.path.isfile(path)  如果path是一个存在的文件,返回True。否则返回False
    os.path.isdir(path)  如果path是一个存在的目录,则返回True。否则返回False
    os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
    os.path.getatime(path)  返回path所指向的文件或者目录的最后存取时间
    os.path.getmtime(path)  返回path所指向的文件或者目录的最后修改时间
    os.path.getsize(path) 返回path的大小
    方法
    在Linux和Mac平台上,该函数会原样返回path,在windows平台上会将路径中所有字符转换为小写,并将所有斜杠转换为饭斜杠。
    >>> os.path.normcase('c:/windows\system32\')   
    'c:\windows\system32\'   
       
    
    规范化路径,如..和/
    >>> os.path.normpath('c://windows\System32\../Temp/')   
    'c:\windows\Temp'   
    
    >>> a='/Users/jieli/test1/\a1/\\aa.py/../..'
    >>> print(os.path.normpath(a))
    /Users/jieli/test1
    os路径处理
    #方式一:推荐使用
    import os
    #具体应用
    import os,sys
    possible_topdir = os.path.normpath(os.path.join(
        os.path.abspath(__file__),
        os.pardir, #上一级
        os.pardir,
        os.pardir
    ))
    sys.path.insert(0,possible_topdir)
    
    
    #方式二:不推荐使用
    os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
    os路径使用

    四 sys模块

    1 sys.argv           命令行参数List,第一个元素是程序本身路径
    2 sys.exit(n)        退出程序,正常退出时exit(0)
    3 sys.version        获取Python解释程序的版本信息
    4 sys.maxint         最大的Int值
    5 sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
    6 sys.platform       返回操作系统平台名称
    

      

    #=========知识储备==========
    #进度条的效果
    [#             ]
    [##            ]
    [###           ]
    [####          ]
    
    #指定宽度
    print('[%-15s]' %'#')
    print('[%-15s]' %'##')
    print('[%-15s]' %'###')
    print('[%-15s]' %'####')
    
    #打印%
    print('%s%%' %(100)) #第二个%号代表取消第一个%的特殊意义
    
    #可传参来控制宽度
    print('[%%-%ds]' %50) #[%-50s]
    print(('[%%-%ds]' %50) %'#')
    print(('[%%-%ds]' %50) %'##')
    print(('[%%-%ds]' %50) %'###')
    
    
    #=========实现打印进度条函数==========
    import sys
    import time
    
    def progress(percent,width=50):
        if percent >= 1:
            percent=1
        show_str=('[%%-%ds]' %width) %(int(width*percent)*'#')
        print('
    %s %d%%' %(show_str,int(100*percent)),file=sys.stdout,flush=True,end='')
    
    
    #=========应用==========
    data_size=1025
    recv_size=0
    while recv_size < data_size:
        time.sleep(0.1) #模拟数据的传输延迟
        recv_size+=1024 #每次收1024
    
        percent=recv_size/data_size #接收的比例
        progress(percent,width=70) #进度条的宽度70
    
    打印进度条
    打印进度条

    五 shutil模块

    高级的 文件、文件夹、压缩包 处理模块

    1、shutil.copyfileobj(fsrc, fdst[, length])
    将文件内容拷贝到另一个文件中
    
     import shutil
     shutil.copyfileobj(open('old.xml','r'), open('new.xml', 'w'))
     
    
    2、shutil.copyfile(src, dst)
    拷贝文件
    
     shutil.copyfile('f1.log', 'f2.log') #目标文件无需存在
     
    
    3、shutil.copymode(src, dst)
    仅拷贝权限。内容、组、用户均不变
    
     shutil.copymode('f1.log', 'f2.log') #目标文件必须存在
     
    
    4、shutil.copystat(src, dst)
    仅拷贝状态的信息,包括:mode bits, atime, mtime, flags
    
     shutil.copystat('f1.log', 'f2.log') #目标文件必须存在
     
    
    5、shutil.copy(src, dst)
    拷贝文件和权限
    
     import shutil
      
     shutil.copy('f1.log', 'f2.log')
     
    
    6、shutil.copy2(src, dst)
    拷贝文件和状态信息
    
     import shutil
      
     shutil.copy2('f1.log', 'f2.log')
     
    
    7、shutil.ignore_patterns(*patterns)
    shutil.copytree(src, dst, symlinks=False, ignore=None)
    递归的去拷贝文件夹
    
     import shutil
      
     shutil.copytree('folder1', 'folder2', ignore=shutil.ignore_patterns('*.pyc', 'tmp*')) #目标目录不能存在,注意对folder2目录父级目录要有可写权限,ignore的意思是排除 
    
     
    
    8、shutil.rmtree(path[, ignore_errors[, onerror]])
    递归的去删除文件
    
     import shutil
      
     shutil.rmtree('folder1')
     
    
    9、shutil.move(src, dst)
    递归的去移动文件,它类似mv命令,其实就是重命名。
    
     import shutil
      
     shutil.move('folder1', 'folder3')
    View Code

      

    shutil.make_archive(base_name, format,...)

    创建压缩包并返回文件路径,例如:zip、tar

    创建压缩包并返回文件路径,例如:zip、tar

      base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径,
    如 data_bak =>保存至当前路径
    如:/tmp/data_bak =>保存至/tmp/
      format: 压缩包种类,“zip”, “tar”, “bztar”,“gztar”
      root_dir: 要压缩的文件夹路径(默认当前目录)
      owner: 用户,默认当前用户
      group: 组,默认当前组
      logger: 用于记录日志,通常是logging.Logger对象

    #将 /data 下的文件打包放置当前程序目录
    import shutil
    ret = shutil.make_archive("data_bak", 'gztar', root_dir='/data')
      
      
    #将 /data下的文件打包放置 /tmp/目录
    import shutil
    ret = shutil.make_archive("/tmp/data_bak", 'gztar', root_dir='/data')
    

      

    shutil 对压缩包的处理是调用 ZipFile 和 TarFile 两个模块来进行的,详细:

    import zipfile
    
    # 压缩
    z = zipfile.ZipFile('laxi.zip', 'w')
    z.write('a.log')
    z.write('data.data')
    z.close()
    
    # 解压
    z = zipfile.ZipFile('laxi.zip', 'r')
    z.extractall(path='.')
    z.close()
    zipfile压缩解压缩
    import tarfile
    
    # 压缩
    >>> t=tarfile.open('/tmp/egon.tar','w')
    >>> t.add('/test1/a.py',arcname='a.bak')
    >>> t.add('/test1/b.py',arcname='b.bak')
    >>> t.close()
    
    
    # 解压
    >>> t=tarfile.open('/tmp/egon.tar','r')
    >>> t.extractall('/egon')
    >>> t.close()
    tarfile压缩解压缩

    六 json&pickle模块

    之前我们学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所以eval的重点还是通常用来执行一个字符串表达式,并返回表达式的值。

    1 import json
    2 x="[null,true,false,1]"
    3 print(eval(x)) #报错,无法解析null类型,而json就可以
    4 print(json.loads(x)) 
    

      

    什么是序列化?

    我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

    为什么要序列化?

    1:持久保存状态

    需知一个软件/程序的执行就在处理一系列状态的变化,在编程语言中,'状态'会以各种各样有结构的数据类型(也可简单的理解为变量)的形式被保存在内存中。

    内存是无法永久保存数据的,当程序运行了一段时间,我们断电或者重启程序,内存中关于这个程序的之前一段时间的数据(有结构)都被清空了。

    在断电或重启程序之前将程序当前内存中所有的数据都保存下来(保存到文件中),以便于下次程序执行能够从文件中载入之前的数据,然后继续执行,这就是序列化。

    具体的来说,你玩使命召唤闯到了第13关,你保存游戏状态,关机走人,下次再玩,还能从上次的位置开始继续闯关。或如,虚拟机状态的挂起等。

    2:跨平台数据交互

    序列化之后,不仅可以把序列化后的内容写入磁盘,还可以通过网络传输到别的机器上,如果收发的双方约定好实用一种序列化的格式,那么便打破了平台/语言差异化带来的限制,实现了跨平台数据交互。

    反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

    如何序列化之json和pickle:

    json

    如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

    内存中的数据  <>  json格式  <>  字符串  <>保存到文件或基于网络传输

    import json
     
    dic={'name':'alvin','age':23,'sex':'male'}
    print(type(dic))#<class 'dict'>
     
    j=json.dumps(dic)
    print(type(j))#<class 'str'>
     
     
    f=open('序列化对象','w')
    f.write(j)  #-------------------等价于json.dump(dic,f)
    f.close()
    #-----------------------------反序列化<br>
    import json
    f=open('序列化对象')
    data=json.loads(f.read())#  等价于data=json.load(f)
    View Code
    import json
    #dct="{'1':111}"#json 不认单引号
    #dct=str({"1":111})#报错,因为生成的数据还是单引号:{'one': 1}
    
    dct='{"1":"111"}'
    print(json.loads(dct))
    
    #conclusion:
    #        无论数据是怎样创建的,只要满足json格式,就可以json.loads出来,不一定非要dumps的数据才能loads
    
     注意点
    不能是单引号

    pickle

    内存中的数据  <>  pickle格式  <>  bytes类型  <>保存到文件或基于网络传输

    import pickle
     
    dic={'name':'alvin','age':23,'sex':'male'}
     
    print(type(dic))#<class 'dict'>
     
    j=pickle.dumps(dic)
    print(type(j))#<class 'bytes'>
     
     
    f=open('序列化对象_pickle','wb')#注意是w是写入str,wb是写入bytes,j是'bytes'
    f.write(j)  #-------------------等价于pickle.dump(dic,f)
     
    f.close()
    #-------------------------反序列化
    import pickle
    f=open('序列化对象_pickle','rb')
     
    data=pickle.loads(f.read())#  等价于data=pickle.load(f)
     
     
    print(data['age'])
    View Code

    Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。

    七 shelve模块

    shelve模块比pickle模块简单,只有一个open函数,返回类似字典的对象,可读可写;key必须为字符串,而值可以是python所支持的数据类型

    import shelve
    
    f=shelve.open(r'sheve.txt')
    # f['stu1_info']={'name':'egon','age':18,'hobby':['piao','smoking','drinking']}
    # f['stu2_info']={'name':'gangdan','age':53}
    # f['school_info']={'website':'http://www.pypy.org','city':'beijing'}
    
    print(f['stu1_info']['hobby'])
    f.close()


    数据只能被重新赋值,不能通过字典方法进行修改
    f['stu2_info']={'name':'gangdan','age':53}
    f['stu2_info']["age"] = 20  #再次读取的时候还是没有改变


    tmp = f['stu2_info']
    tmp["age"] = 20
    f["stu2_info"] = tmp #可以重新赋值

      

    八 xml模块

    xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的接口还主要是xml。

    xml的格式如下,就是通过<>节点来区别数据结构的:

    <?xml version="1.0"?>
    <data>
        <country name="Liechtenstein">
            <rank updated="yes">2</rank>
            <year>2008</year>
            <gdppc>141100</gdppc>
            <neighbor name="Austria" direction="E"/>
            <neighbor name="Switzerland" direction="W"/>
        </country>
        <country name="Singapore">
            <rank updated="yes">5</rank>
            <year>2011</year>
            <gdppc>59900</gdppc>
            <neighbor name="Malaysia" direction="N"/>
        </country>
        <country name="Panama">
            <rank updated="yes">69</rank>
            <year>2011</year>
            <gdppc>13600</gdppc>
            <neighbor name="Costa Rica" direction="W"/>
            <neighbor name="Colombia" direction="E"/>
        </country>
    </data>
    xml数据

    xml协议在各个语言里的都 是支持的,在python中可以用以下模块操作xml:

    # print(root.iter('year')) #全文搜索
    # print(root.find('country')) #在root的子节点找,只找一个
    # print(root.findall('country')) #在root的子节点找,找所有
    

      

    import xml.etree.ElementTree as ET
     
    tree = ET.parse("xmltest.xml")
    root = tree.getroot()
    print(root.tag)
     
    #遍历xml文档
    for child in root:
        print('========>',child.tag,child.attrib,child.attrib['name'])
        for i in child:
            print(i.tag,i.attrib,i.text)
     
    #只遍历year 节点
    for node in root.iter('year'):
        print(node.tag,node.text)
    #---------------------------------------
    
    import xml.etree.ElementTree as ET
     
    tree = ET.parse("xmltest.xml")
    root = tree.getroot()
     
    #修改
    for node in root.iter('year'):
        new_year=int(node.text)+1
        node.text=str(new_year)
        node.set('updated','yes')
        node.set('version','1.0')
    tree.write('test.xml')
     
     
    #删除node
    for country in root.findall('country'):
       rank = int(country.find('rank').text)
       if rank > 50:
         root.remove(country)
     
    tree.write('output.xml')
    View Code
    #在country内添加(append)节点year2
    import xml.etree.ElementTree as ET
    tree = ET.parse("a.xml")
    root=tree.getroot()
    for country in root.findall('country'):
        for year in country.findall('year'):
            if int(year.text) > 2000:
                year2=ET.Element('year2')
                year2.text='新年'
                year2.attrib={'update':'yes'}
                country.append(year2) #往country节点下添加子节点
    
    tree.write('a.xml.swap')
    

      

    自己创建xml文档:

    import xml.etree.ElementTree as ET
     
     
    new_xml = ET.Element("namelist")
    name = ET.SubElement(new_xml,"name",attrib={"enrolled":"yes"})
    age = ET.SubElement(name,"age",attrib={"checked":"no"})
    sex = ET.SubElement(name,"sex")
    sex.text = '33'
    name2 = ET.SubElement(new_xml,"name",attrib={"enrolled":"no"})
    age = ET.SubElement(name2,"age")
    age.text = '19'
     
    et = ET.ElementTree(new_xml) #生成文档对象
    et.write("test.xml", encoding="utf-8",xml_declaration=True)
     
    ET.dump(new_xml) #打印生成的格式
    View Code

    九 configparser模块

    配置文件如下:

    [section1]
    k1 = v1
    k2:v2
    user=egon
    age=18
    is_admin=true
    salary=31
    
    [section2]
    k1 = v1
    

      

    读取

    import configparser
    
    config=configparser.ConfigParser()
    config.read('a.cfg')
    
    #查看所有的标题
    res=config.sections() #['section1', 'section2']
    print(res)
    
    #查看标题section1下所有key=value的key
    options=config.options('section1')
    print(options) #['k1', 'k2', 'user', 'age', 'is_admin', 'salary']
    
    #查看标题section1下所有key=value的(key,value)格式
    item_list=config.items('section1')
    print(item_list) #[('k1', 'v1'), ('k2', 'v2'), ('user', 'egon'), ('age', '18'), ('is_admin', 'true'), ('salary', '31')]
    
    #查看标题section1下user的值=>字符串格式
    val=config.get('section1','user')
    print(val) #egon
    
    #查看标题section1下age的值=>整数格式
    val1=config.getint('section1','age')
    print(val1) #18
    
    #查看标题section1下is_admin的值=>布尔值格式
    val2=config.getboolean('section1','is_admin')
    print(val2) #True
    
    #查看标题section1下salary的值=>浮点型格式
    val3=config.getfloat('section1','salary')
    print(val3) #31.0
    View Code

    改写

    import configparser
    
    config=configparser.ConfigParser()
    config.read('a.cfg',encoding='utf-8')
    
    
    #删除整个标题section2
    config.remove_section('section2')
    
    #删除标题section1下的某个k1和k2
    config.remove_option('section1','k1')
    config.remove_option('section1','k2')
    
    #判断是否存在某个标题
    print(config.has_section('section1'))
    
    #判断标题section1下是否有user
    print(config.has_option('section1',''))
    
    
    #添加一个标题
    config.add_section('egon')
    
    #在标题egon下添加name=egon,age=18的配置
    config.set('egon','name','egon')
    config.set('egon','age',18) #报错,必须是字符串
    
    
    #最后将修改的内容写入文件,完成最终的修改
    config.write(open('a.cfg','w'))
    View Code

    基于上述方法添加一个ini文档

    import configparser
      
    config = configparser.ConfigParser()
    config["DEFAULT"] = {'ServerAliveInterval': '45',
                          'Compression': 'yes',
                         'CompressionLevel': '9'}
      
    config['bitbucket.org'] = {}
    config['bitbucket.org']['User'] = 'hg'
    config['topsecret.server.com'] = {}
    topsecret = config['topsecret.server.com']
    topsecret['Host Port'] = '50022'     # mutates the parser
    topsecret['ForwardX11'] = 'no'  # same here
    config['DEFAULT']['ForwardX11'] = 'yes'
    with open('example.ini', 'w') as configfile:
       config.write(configfile)
    
    基于上述方法添加一个ini文档
    View Code

    十 hashlib模块

    # 1、什么叫hash:hash是一种算法(3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法),该算法接受传入的内容,经过运算得到一串hash值
    # 2、hash值的特点是:
    #2.1 只要传入的内容一样,得到的hash值必然一样=====>要用明文传输密码文件完整性校验
    #2.2 不能由hash值返解成内容=======》把密码做成hash值,不应该在网络传输明文密码
    #2.3 只要使用的hash算法不变,无论校验的内容有多大,得到的hash值长度是固定的

    hash算法就像一座工厂,工厂接收你送来的原材料(可以用m.update()为工厂运送原材料),经过加工返回的产品就是hash值
    import hashlib
     
    m=hashlib.md5()# m=hashlib.sha256()
     
    m.update('hello'.encode('utf8'))
    print(m.hexdigest())  #5d41402abc4b2a76b9719d911017c592
     
    m.update('alvin'.encode('utf8'))
     
    print(m.hexdigest())  #92a7e713c30abbb0319fa07da2a5c4af
     
    m2=hashlib.md5()
    m2.update('helloalvin'.encode('utf8'))
    print(m2.hexdigest()) #92a7e713c30abbb0319fa07da2a5c4af
    
    '''
    注意:把一段很长的数据update多次,与一次update这段长数据,得到的结果一样
    但是update多次为校验大文件提供了可能。
    '''
    View Code

    以上加密算法虽然依然非常厉害,但时候存在缺陷,即:通过撞库可以反解。所以,有必要对加密算法中添加自定义key再来做加密。

    import hashlib
     
    # ######## 256 ########
     
    hash = hashlib.sha256('898oaFs09f'.encode('utf8'))
    hash.update('alvin'.encode('utf8'))
    print (hash.hexdigest())#e79e68f070cdedcfe63eaf1a2e92c83b4cfb1b5c6bc452d214c1b7e77cdfd1c7
    View Code
    import hashlib
    passwds=[
        'alex3714',
        'alex1313',
        'alex94139413',
        'alex123456',
        '123456alex',
        'a123lex',
        ]
    def make_passwd_dic(passwds):
        dic={}
        for passwd in passwds:
            m=hashlib.md5()
            m.update(passwd.encode('utf-8'))
            dic[passwd]=m.hexdigest()
        return dic
    
    def break_code(cryptograph,passwd_dic):
        for k,v in passwd_dic.items():
            if v == cryptograph:
                print('密码是===>33[46m%s33[0m' %k)
    
    cryptograph='aee949757a2e698417463d47acac93df'
    break_code(cryptograph,make_passwd_dic(passwds))
    
    模拟撞库破解密码
    模拟撞库破解密码

    十一 suprocess模块

    import  subprocess
    
    '''
    sh-3.2# ls /Users/egon/Desktop |grep txt$
    mysql.txt
    tt.txt
    事物.txt
    '''
    
    res1=subprocess.Popen('ls /Users/jieli/Desktop',shell=True,stdout=subprocess.PIPE)
    res=subprocess.Popen('grep txt$',shell=True,stdin=res1.stdout,
                     stdout=subprocess.PIPE)
    
    print(res.stdout.read().decode('utf-8'))
    
    
    #等同于上面,但是上面的优势在于,一个数据流可以和另外一个数据流交互,可以通过爬虫得到结果然后交给grep
    res1=subprocess.Popen('ls /Users/jieli/Desktop |grep txt$',shell=True,stdout=subprocess.PIPE)
    print(res1.stdout.read().decode('utf-8'))
    
    
    #windows下:
    # dir | findstr 'test*'
    # dir | findstr 'txt$'
    import subprocess
    res1=subprocess.Popen(r'dir C:UsersAdministratorPycharmProjects	est函数备课',shell=True,stdout=subprocess.PIPE)
    res=subprocess.Popen('findstr test*',shell=True,stdin=res1.stdout,
                     stdout=subprocess.PIPE)
    
    print(res.stdout.read().decode('gbk')) #subprocess使用当前系统默认编码,得到结果为bytes类型,在windows下需要用gbk解码
    View Code

    十二 logging模块

    一 日志级别

    CRITICAL = 50 #FATAL = CRITICAL
    ERROR = 40
    WARNING = 30 #WARN = WARNING
    INFO = 20
    DEBUG = 10
    NOTSET = 0 #不设置

    二 默认级别为warning,默认打印到终端

    import logging
    
    logging.debug('调试debug')
    logging.info('消息info')
    logging.warning('警告warn')
    logging.error('错误error')
    logging.critical('严重critical')
    
    '''
    WARNING:root:警告warn
    ERROR:root:错误error
    CRITICAL:root:严重critical
    '''
    

      

    三 为logging模块指定全局配置,针对所有logger有效,控制打印到文件中

    可在logging.basicConfig()函数中通过具体参数来更改logging模块默认行为,可用参数有
    filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
    filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
    format:指定handler使用的日志显示格式。 
    datefmt:指定日期时间格式。 
    level:设置rootlogger(后边会讲解具体概念)的日志级别 
    stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。
    
    
    
    #格式
    %(name)s:Logger的名字,并非用户名,详细查看
    
    %(levelno)s:数字形式的日志级别
    
    %(levelname)s:文本形式的日志级别
    
    %(pathname)s:调用日志输出函数的模块的完整路径名,可能没有
    
    %(filename)s:调用日志输出函数的模块的文件名
    
    %(module)s:调用日志输出函数的模块名
    
    %(funcName)s:调用日志输出函数的函数名
    
    %(lineno)d:调用日志输出函数的语句所在的代码行
    
    %(created)f:当前时间,用UNIX标准的表示时间的浮 点数表示
    
    %(relativeCreated)d:输出日志信息时的,自Logger创建以 来的毫秒数
    
    %(asctime)s:字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
    
    %(thread)d:线程ID。可能没有
    
    %(threadName)s:线程名。可能没有
    
    %(process)d:进程ID。可能没有
    
    %(message)s:用户输出的消息
    
     
    logging.basicConfig()
    import logging
    logging.basicConfig(filename='access.log',
                        format='%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S %p',
                        level=10)
    
    logging.debug('调试debug')
    logging.info('消息info')
    logging.warning('警告warn')
    logging.error('错误error')
    logging.critical('严重critical')
    
    
    
    
    
    #========结果
    access.log内容:
    2017-07-28 20:32:17 PM - root - DEBUG -test:  调试debug
    2017-07-28 20:32:17 PM - root - INFO -test:  消息info
    2017-07-28 20:32:17 PM - root - WARNING -test:  警告warn
    2017-07-28 20:32:17 PM - root - ERROR -test:  错误error
    2017-07-28 20:32:17 PM - root - CRITICAL -test:  严重critical
    
    part2: 可以为logging模块指定模块级的配置,即所有logger的配置
    使用

    四 logging模块的Formatter,Handler,Logger,Filter对象

    #logger:产生日志的对象
    
    #Filter:过滤日志的对象
    
    #Handler:接收日志然后控制打印到不同的地方,FileHandler用来打印到文件中,StreamHandler用来打印到终端
    
    #Formatter对象:可以定制不同的日志格式对象,然后绑定给不同的Handler对象使用,以此来控制不同的Handler的日志格式
    '''
    critical=50
    error =40
    warning =30
    info = 20
    debug =10
    '''
    
    
    import logging
    
    #1、logger对象:负责产生日志,然后交给Filter过滤,然后交给不同的Handler输出
    logger=logging.getLogger(__file__)
    
    #2、Filter对象:不常用,略
    
    #3、Handler对象:接收logger传来的日志,然后控制输出
    h1=logging.FileHandler('t1.log') #打印到文件
    h2=logging.FileHandler('t2.log') #打印到文件
    h3=logging.StreamHandler() #打印到终端
    
    #4、Formatter对象:日志格式
    formmater1=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S %p',)
    
    formmater2=logging.Formatter('%(asctime)s :  %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S %p',)
    
    formmater3=logging.Formatter('%(name)s %(message)s',)
    
    
    #5、为Handler对象绑定格式
    h1.setFormatter(formmater1)
    h2.setFormatter(formmater2)
    h3.setFormatter(formmater3)
    
    #6、将Handler添加给logger并设置日志级别
    logger.addHandler(h1)
    logger.addHandler(h2)
    logger.addHandler(h3)
    logger.setLevel(10)
    
    #7、测试
    logger.debug('debug')
    logger.info('info')
    logger.warning('warning')
    logger.error('error')
    logger.critical('critical')
    View Code

    五 Logger与Handler的级别

    logger是第一级过滤,然后才能到handler,我们可以给logger和handler同时设置level

    Logger is also the first to filter the message based on a level — if you set the logger to INFO, and all handlers to DEBUG, you still won't receive DEBUG messages on handlers — they'll be rejected by the logger itself. If you set logger to DEBUG, but all handlers to INFO, you won't receive any DEBUG messages either — because while the logger says "ok, process this", the handlers reject it (DEBUG < INFO).
    
    
    
    #验证
    import logging
    
    
    form=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S %p',)
    
    ch=logging.StreamHandler()
    
    ch.setFormatter(form)
    # ch.setLevel(10)
    ch.setLevel(20)
    
    l1=logging.getLogger('root')
    # l1.setLevel(20)
    l1.setLevel(10)
    l1.addHandler(ch)
    
    l1.debug('l1 debug')
    
    重要,重要,重要!!!
    View Code
  • 相关阅读:
    Running APP 使用说明
    Android 控件八 WebView 控件
    Android 控件七 ImageView 控件
    Android 控件六 CheckBox 控件
    Android 控件五 RadioButton 控件
    Android 控件四 EditText 控件
    Android 控件三 TextView 控件实现 Button
    Android 控件二 Button
    Android 基础控件演示实例
    Android 控件一 TextView
  • 原文地址:https://www.cnblogs.com/zzhhtt/p/9020604.html
Copyright © 2011-2022 走看看