zoukankan      html  css  js  c++  java
  • Hive调优实战

    Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具。

    使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,所以需要去掉原有关系型数据库下开发的一些固有思维。

    优化时,把hive sql当做map reduce程序来读,理解hadoop的核心能力,是hive优化的根本。

     

    长期观察hadoop处理数据的过程,有几个显著的特征:

    1. 不怕数据多,就怕数据倾斜。

    2.对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的。map reduce作业初始化的时间是比较长的。

    3.对sum  count来说,不存在数据倾斜问题。

    4.对count(distinct ),效率较低,数据量一多,准出问题,如果是多count(distinct )效率更低。

    优化可以从几个方面着手:

    1. 好的模型设计事半功倍。

    2. 解决数据倾斜问题。

    3. 减少job数。

    4. 设置合理的map reduce的task数,能有效提升性能。(比如,10w+级别的计算,用160个reduce,那是相当的浪费,1个足够)。

    5. 自己动手写sql解决数据倾斜问题是个不错的选择。set hive.groupby.skewindata=true;这是通用的算法优化,但算法优化总是漠视业务,习惯性提供通用的解决方法。 Etl开发人员更了解业务,更了解数据,所以通过业务逻辑解决倾斜的方法往往更精确,更有效。

    6. 对count(distinct)采取漠视的方法,尤其数据大的时候很容易产生倾斜问题,不抱侥幸心理。自己动手,丰衣足食。

    7. 对小文件进行合并,是行至有效的提高调度效率的方法,假如我们的作业设置合理的文件数,对云梯的整体调度效率也会产生积极的影响。

    8. 优化时把握整体,单个作业最优不如整体最优。

    迁移和优化过程中的案例:

    问题1:如日志中,常会有信息丢失的问题,比如全网日志中的user_id,如果取其中的user_id和bmw_users关联,就会碰到数据倾斜的问题。

    方法:解决数据倾斜问题

    解决方法(1). User_id为空的不参与关联,例如:

    Select *

    From log a

    Join  bmw_users b

    On a.user_id is not null

    And a.user_id = b.user_id

    Union all

    Select *

    from log a

    where a.user_id is null;

    解决方法(2):

    Select *

    from log a

    left outer join bmw_users b

    on case when a.user_id is null then concat(‘dp_hive’,rand() ) else a.user_id end = b.user_id;

    总结:2比1效率更好,不但io少了,而且作业数也少了。1方法log读取两次,jobs是2。2方法job数是1 。这个优化适合无效id(比如-99,’’,null等)产生的倾斜问题。把空值的key变成一个字符串加上随机数,就能把倾斜的数据分到不同的reduce上 ,解决数据倾斜问题。因为空值不参与关联,即使分到不同的reduce上,也不影响最终的结果。附上hadoop通用关联的实现方法(关联通过二次排序实现的,关联的列为parition key,关联的列c1和表的tag组成排序的group key,根据parition key分配reduce。同一reduce内根据group key排序)。

    问题2数据倾斜__不同数据类型id的关联。

    一张表s8的日志,每个商品一条记录,要和商品表关联。但关联却碰到倾斜的问题。s8的日志中有字符串商品id,也有数字的商品id,类型是string的,但商品中的数字id是bigint的。猜测问题的原因是把s8的商品id转成数字id做hash来分配reduce,所以字符串id的s8日志,都到一个reduce上了,解决的方法验证了这个猜测。

    方法:把数字类型转换成字符串类型

    Select * from s8_log a

    Left outer join r_auction_auctions b

    On a.auction_id = cast(b.auction_id as string);

    问题3:利用hive 对UNION ALL的优化的特性

    hive对union all优化只局限于非嵌套查询。

    比如以下的例子:

    select * from

    (select * from t1

     Group by c1,c2,c3

    Union all

    Select * from t2

    Group by c1,c2,c3) t3

       Group by c1,c2,c3;

    从业务逻辑上说,子查询内的group by 怎么都看显得多余(功能上的多余,除非有count(distinct)),如果不是因为hive bug或者性能上的考量(曾经出现如果不子查询group by ,数据得不到正确的结果的hive bug)。所以这个hive按经验转换成

    select * from

    (select * from t1

    Union all

    Select * from t2

    ) t3

       Group by c1,c2,c3;

    经过测试,并未出现union all的hive bug,数据是一致的。mr的作业数有3减少到1。

    t1相当于一个目录,t2相当于一个目录,那么对map reduce程序来说,t1,t2可以做为map reduce 作业的mutli inputs。那么,这可以通过一个map reduce 来解决这个问题。Hadoop的计算框架,不怕数据多,就怕作业数多。

    但如果换成是其他计算平台如oracle,那就不一定了,因为把大的输入拆成两个输入,分别排序汇总后merge(假如两个子排序是并行的话),是有可能性能更优的(比如希尔排序比冒泡排序的性能更优)。

    问题4:比如推广效果表要和商品表关联,效果表中的auction id列既有商品id,也有数字id,和商品表关联得到商品的信息。那么以下的hive sql性能会比较好

    Select * from effect a

    Join (select auction_id as auction_id from auctions

    Union all

    Select auction_string_id as auction_id from auctions

    ) b

    On a.auction_id = b.auction_id。

    比分别过滤数字id,字符串id然后分别和商品表关联性能要好。

    这样写的好处,1个MR作业,商品表只读取一次,推广效果表只读取一次。把这个sql换成MR代码的话,map的时候,把a表的记录打上标签a,商品表记录每读取一条,打上标签b,变成两个<key ,value>对,<b,数字id>,<b,字符串id>。所以商品表的hdfs读只会是一次。

    问题5:先join生成临时表,在union all还是写嵌套查询,这是个问题。比如以下例子:

    Select *

    From (select *

         From t1

         Uion all

         select *

         From t4

         Union all

         Select *

         From t2

         Join t3

         On t2.id = t3.id

         ) x

    Group by c1,c2;

    这个会有4个jobs。假如先join生成临时表的话t5,然后union all,会变成2个jobs。

    Insert overwrite table t5

    Select *

         From t2

         Join t3

         On t2.id = t3.id

    ;

    Select * from (t1 union all t4 union all t5) ;

    hive在union all优化上可以做得更智能(把子查询当做临时表),这样可以减少开发人员的负担。出现这个问题的原因应该是union all目前的优化只局限于非嵌套查询。如果写MR程序这一点也不是问题,就是multi inputs

     

    问题6:使用map join解决数据倾斜的常景下小表关联大表的问题,但如果小表很大,怎么解决。这个使用的频率非常高,但如果小表很大,大到map join会出现bug或异常,这时就需要特别的处理。云瑞和玉玑提供了非常给力的解决方案。以下例子:

    Select * from log a

    Left outer join members b

    On a.memberid = b.memberid.

    Members有600w+的记录,把members分发到所有的map上也是个不小的开销,而且map join不支持这么大的小表。如果用普通的join,又会碰到数据倾斜的问题。

    解决方法:

    Select /*+mapjoin(x)*/* from log a

    Left outer join (select  /*+mapjoin(c)*/d.*

    From (select  distinct memberid from log ) c

    Join members d

    On c.memberid = d.memberid

    )x

    On a.memberid = b.memberid。

    先根据log取所有的memberid,然后mapjoin 关联members取今天有日志的members的信息,然后在和log做mapjoin。

    假如,log里memberid有上百万个,这就又回到原来map join问题。所幸,每日的会员uv不会太多,有交易的会员不会太多,有点击的会员不会太多,有佣金的会员不会太多等等。所以这个方法能解决很多场景下的数据倾斜问题。

    问题7:HIVE下通用的数据倾斜解决方法,double被关联的相对较小的表,这个方法在mr的程序里常用。还是刚才的那个问题:

    Select  * from log a

    Left outer join (select  /*+mapjoin(e)*/

    memberid, number

                 From members d

                 Join num e

                 ) b

    On a.memberid=  b.memberid

    And mod(a.pvtime,30)+1=b.number。

    Num表只有一列number,有30行,是1,30的自然数序列。就是把member表膨胀成30份,然后把log数据根据memberid和pvtime分到不同的reduce里去,这样可以保证每个reduce分配到的数据可以相对均匀。就目前测试来看,使用mapjoin的方案性能稍好。后面的方案适合在map join无法解决问题的情况下。

    长远设想,把如下的优化方案做成通用的hive优化方法

    1. 采样log表,哪些memberid比较倾斜,得到一个结果表tmp1。由于对计算框架来说,所有的数据过来,他都是不知道数据分布情况的,所以采样是并不可少的。Stage1

    2. 数据的分布符合社会学统计规则,贫富不均。倾斜的key不会太多,就像一个社会的富人不多,奇特的人不多一样。所以tmp1记录数会很少。把tmp1和members做map join生成tmp2,把tmp2读到distribute file cache。这是一个map过程。Stage2

    3.    map读入members和log,假如记录来自log,则检查memberid是否在tmp2里,如果是,输出到本地文件a,否则生成<memberid,value>的key,value对,假如记录来自member,生成<memberid,value>的key,value对,进入reduce阶段。Stage3.

    4. 最终把a文件,把Stage3 reduce阶段输出的文件合并起写到hdfs

    这个方法在hadoop里应该是能实现的。Stage2是一个map过程,可以和stage3的map过程可以合并成一个map过程。

    这个方案目标就是:倾斜的数据用mapjoin,不倾斜的数据用普通的join,最终合并得到完整的结果。用hive sql写的话,sql会变得很多段,而且log表会有多次读。倾斜的key始终是很少的,这个在绝大部分的业务背景下适用。那是否可以作为hive针对数据倾斜join时候的通用算法呢?

    问题8:多粒度(平级的)uv的计算优化,比如要计算店铺的uv。还有要计算页面的uv,pvip.

    方案1:

    Select shopid,count(distinct uid)

    From log group by shopid;

    Select pageid, count(distinct uid),

    From log group by pageid;

    由于存在数据倾斜问题,这个结果的运行时间是非常长的。

    方案二:

    From log

    Insert overwrite table t1 (type=’1’)

    Select shopid

    Group by shopid ,acookie

    Insert overwrite table t1 (type=’2’)

    Group by pageid,acookie;

    店铺uv:

    Select shopid,sum(1)

    From t1

    Where type =’1’

    Group by shopid ;

    页面uv:

    Select pageid,sum(1)

    From t1

    Where type =’1’

    Group by pageid ;

    这里使用了multi insert的方法,有效减少了hdfs读,但multi insert会增加hdfs写,多一次额外的map阶段的hdfs写。使用这个方法,可以顺利的产出结果。

    方案三:

    Insert into t1

    Select type,type_name,’’ as uid

    From (

    Select  ‘page’ as type,

            Pageid as type_name,

            Uid

    From log

    Union all

    Select  ‘shop’ as type,

           Shopid as type_name,

           Uid

    From log ) y

    Group by type,type_name,uid;

    Insert into t2

    Select type,type_name,sum(1)

    From t1

    Group by type,type_name;

    From t2

    Insert into t3

    Select type,type_name,uv

    Where type=’page’

    Select type,type_name,uv

    Where type=’shop’ ;

    最终得到两个结果表t3,页面uv表,t4,店铺结果表。从io上来说,log一次读。但比方案2少次hdfs写(multi insert有时会增加额外的map阶段hdfs写)。作业数减少1个到3,有reduce的作业数由4减少到2,第三步是一个小表的map过程,分下表,计算资源消耗少。但方案2每个都是大规模的去重汇总计算。

    这个优化的主要思路是,map reduce作业初始化话的时间是比较长,既然起来了,让他多干点活,顺便把页面按uid去重的活也干了,省下log的一次读和作业的初始化时间,省下网络shuffle的io,但增加了本地磁盘读写。效率提升较多。

    这个方案适合平级的不需要逐级向上汇总的多粒度uv计算,粒度越多,节省资源越多,比较通用。

     

    问题9:多粒度,逐层向上汇总的uv结算。比如4个维度,a,b,c,d,分别计算a,b,c,d,uv;

    a,b,c,uv;a,b,uv;a;uv,total uv4个结果表。这可以用问题8的方案二,这里由于uv场景的特殊性,多粒度,逐层向上汇总,就可以使用一次排序,所有uv计算受益的计算方法。

    案例:目前mm_log日志一天有25亿+的pv数,要从mm日志中计算uv,与ipuv,一共计算

    三个粒度的结果表

    (memberid,siteid,adzoneid,province,uv,ipuv)  R_TABLE_4

    (memberid,siteid,adzoneid,uv,ipuv) R_TABLE_3

     (memberid,siteid,uv,ipuv) R_TABLE_2

    第一步:按memberid,siteid,adzoneid,province,使用group去重,产生临时表,对cookie,ip

    打上标签放一起,一起去重,临时表叫T_4;

    Select memberid,siteid,adzoneid,province,type,user

    From(

    Select memberid,siteid,adzoneid,province,‘a’ type ,cookie as user from mm_log where ds=20101205

    Union all

    Select memberid,siteid,adzoneid,province,‘i’ type ,ip as user from mm_log where ds=20101205

    ) x group by memberid,siteid,adzoneid,province,type,user ;

    第二步:排名,产生表T_4_NUM.Hadoop最强大和核心能力就是parition 和 sort.按type,acookie分组,

    Type,acookie,memberid,siteid,adzoneid,province排名。

    Select * ,

    row_number(type,user,memberid,siteid,adzoneid ) as adzone_num , row_number(type,user,memberid,siteid ) as site_num,

    row_number(type,user,memberid ) as member_num,

    row_number(type,user ) as total_num

    from (select  * from T_4 distribute by type,user sort by type,user, memberid,siteid,adzoneid ) x;

    这样就可以得到不同层次粒度上user的排名,相同的user id在不同的粒度层次上,排名等于1的记录只有1条。取排名等于1的做sum,效果相当于Group by user去重后做sum操作。

    第三步:不同粒度uv统计,先从最细粒度的开始统计,产生结果表R_TABLE_4,这时,结果集只有10w的级别。

    如统计memberid,siteid,adzoneid,provinceid粒度的uv使用的方法就是

    Select memberid,siteid,adzoneid, provinceid,

    sum(case when  type =’a’ then cast(1) as bigint end ) as province_uv ,

    sum(case when  type =’i’ then cast(1) as bigint end ) as province_ip ,

    sum(case when adzone_num =1 and type =’a’ then cast(1) as bigint end ) as adzone_uv ,

    sum(case when adzone_num =1 and type =’i’ then cast(1) as bigint end ) as adzone_ip ,

    sum(case when site_num =1 and type =’a’ then cast(1) as bigint end ) as site_uv ,

    sum(case when site_num =1 and type =’i’ then cast(1) as bigint end ) as site_ip ,

    sum(case when member_num =1 and type =’a’ then cast(1) as bigint end ) as member_uv ,

    sum(case when member_num =1 and type =’i’ then cast(1) as bigint end ) as member_ip ,

    sum(case when total_num =1 and type =’a’ then cast(1) as bigint end ) as total_uv ,

    sum(case when total_num =1 and type =’i’ then cast(1) as bigint end ) as total_ip ,

    from T_4_NUM

    group by memberid,siteid,adzoneid, provinceid ;

    广告位粒度的uv的话,从R_TABLE_4统计,这是源表做10w级别的统计

    Select memberid,siteid,adzoneid,sum(adzone_uv),sum(adzone_ip)

    From R_TABLE_4

    Group by memberid,siteid,adzoneid;

    memberid,siteid的uv计算 ,

    memberid的uv计算,

    total uv 的计算也都从R_TABLE_4汇总。

    附上HIVE_SQL写法基本原则:

    1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段

    select ... from A

    join B

    on A.key = B.key

    where A.userid>10

         and B.userid<10

            and A.dt='20120417'

            and B.dt='20120417';

    应该改写为:

    select .... from (select .... from A

                      where dt='201200417'

                                        and userid>10

                                  ) a

    join ( select .... from B

           where dt='201200417'

                         and userid < 10   

         ) b

    on a.key = b.key;

    2:尽量原子化操作,尽量避免一个SQL包含复杂逻辑

    可以使用中间表来完成复杂的逻辑

    drop table if exists tmp_table_1;

    create table if not exists tmp_table_1 as

    select ......;

    drop table if exists tmp_table_2;

    create table if not exists tmp_table_2 as

    select ......;

    drop table if exists result_table;

    create table if not exists result_table as

    select ......;

    drop table if exists tmp_table_1;

    drop table if exists tmp_table_2;

    3:单个SQL所起的JOB个数尽量控制在5个以下

    4:慎重使用mapjoin,一般行数小于2000行,大小小于1M(扩容后可以适当放大)的表才能使用,小表要注意放在join的左边(目前TCL里面很多都小表放在join的右边)。

    否则会引起磁盘和内存的大量消耗

    5:写SQL要先了解数据本身的特点,如果有join ,group操作的话,要注意是否会有数据倾斜

    如果出现数据倾斜,应当做如下处理:

    set hive.exec.reducers.max=200;

    set mapred.reduce.tasks= 200;---增大Reduce个数

    set hive.groupby.mapaggr.checkinterval=100000 ;--这个是group的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置

    set hive.groupby.skewindata=true; --如果是group by过程出现倾斜 应该设置为true

    set hive.skewjoin.key=100000; --这个是join的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置

    set hive.optimize.skewjoin=true;--如果是join 过程出现倾斜 应该设置为true

    6:如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into 语句,实际测试过程中,执行时间能提升50%

    insert overwite table tablename partition (dt= ....)

    select ..... from (

                       select ... from A

                       union all

                       select ... from B

                       union all

                       select ... from C

                                   ) R

    where ...;

    可以改写为:

    insert into table tablename partition (dt= ....)

    select .... from A

    WHERE ...;

    insert into table tablename partition (dt= ....)

    select .... from B

    WHERE ...;

    insert into table tablename partition (dt= ....)

    select .... from C

    WHERE ...; 

  • 相关阅读:
    【阿里云产品公测】云引擎ACE新手实战基于Wordpress
    【阿里云产品公测】结构化数据服务OTS之JavaSDK初体验
    洗牌算法详解
    常用的位操作
    字符串乘法
    如何运用二分查找算法
    递归详解
    判断回文链表
    子集、排列、组合问题汇总
    接雨水问题详解
  • 原文地址:https://www.cnblogs.com/zzjhn/p/3834773.html
Copyright © 2011-2022 走看看