zoukankan      html  css  js  c++  java
  • Hive基本命令整理

    创建表: hive> CREATE TABLE pokes (foo INT, bar STRING);         Creates a table called pokes with two columns, the first being an integer and the other a string

    创建一个新表,结构与其他一样 hive> create table new_table like records;

    创建分区表: hive> create table logs(ts bigint,line string) partitioned by (dt String,country String);

    加载分区表数据: hive> load data local inpath '/home/hadoop/input/hive/partitions/file1' into table logs partition (dt='2001-01-01',country='GB');

    展示表中有多少分区: hive> show partitions logs;

    展示所有表: hive> SHOW TABLES;         lists all the tables hive> SHOW TABLES '.*s';

    lists all the table that end with 's'. The pattern matching follows Java regular expressions. Check out this link for documentation http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

    显示表的结构信息 hive> DESCRIBE invites;         shows the list of columns

    更新表的名称: hive> ALTER TABLE source RENAME TO target;

    添加新一列 hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');   删除表: hive> DROP TABLE records; 删除表中数据,但要保持表的结构定义 hive> dfs -rmr /user/hive/warehouse/records;

    从本地文件加载数据: hive> LOAD DATA LOCAL INPATH '/home/hadoop/input/ncdc/micro-tab/sample.txt' OVERWRITE INTO TABLE records;

    显示所有函数: hive> show functions;

    查看函数用法: hive> describe function substr;

    查看数组、map、结构 hive> select col1[0],col2['b'],col3.c from complex;

    内连接: hive> SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);

    查看hive为某个查询使用多少个MapReduce作业 hive> Explain SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);

    外连接: hive> SELECT sales.*, things.* FROM sales LEFT OUTER JOIN things ON (sales.id = things.id); hive> SELECT sales.*, things.* FROM sales RIGHT OUTER JOIN things ON (sales.id = things.id); hive> SELECT sales.*, things.* FROM sales FULL OUTER JOIN things ON (sales.id = things.id);

    in查询:Hive不支持,但可以使用LEFT SEMI JOIN hive> SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);

    Map连接:Hive可以把较小的表放入每个Mapper的内存来执行连接操作 hive> SELECT /*+ MAPJOIN(things) */ sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);

    INSERT OVERWRITE TABLE ..SELECT:新表预先存在 hive> FROM records2     > INSERT OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station) GROUP BY year     > INSERT OVERWRITE TABLE records_by_year SELECT year, COUNT(1) GROUP BY year     > INSERT OVERWRITE TABLE good_records_by_year SELECT year, COUNT(1) WHERE temperature != 9999 AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9) GROUP BY year;  

    CREATE TABLE ... AS SELECT:新表表预先不存在 hive>CREATE TABLE target AS SELECT col1,col2 FROM source;

    创建视图: hive> CREATE VIEW valid_records AS SELECT * FROM records2 WHERE temperature !=9999;

    查看视图详细信息: hive> DESCRIBE EXTENDED valid_records;

  • 相关阅读:
    fread 和 read的区别
    Windows下的linux开发环境Cygwin的安装配置
    开机出现grub提示符后怎样进入系统?
    Matlab中函数句柄的优点
    UNIX环境高级编程的apue.h源码APUE
    装了一个ubuntu10.10,打印机不能添加了,
    迅雷上如何下载热映的电影大片~~
    我的linux 初始配置安装的东东,最好保存上一份,对于经常装linux的朋友
    HDU 1875 畅通工程再续
    HDU 1874 畅通工程续
  • 原文地址:https://www.cnblogs.com/zzjhn/p/3855572.html
Copyright © 2011-2022 走看看