zoukankan      html  css  js  c++  java
  • storm 整合 kafka之保存MySQL数据库

    整合Kafka+Storm,消息通过各种方式进入到Kafka消息中间件,比如通过使用Flume来收集的日志数据,然后暂由Kafka中的路由暂存,然后在由实时计算程序Storm做实时分析,这时候我们需要讲Storm中的Spout中读取Kafka中的消息,然后交由具体的Bolt组件分析处理。

    1、配置Maven依赖包
     <dependency>
          <groupId>junit</groupId>
          <artifactId>junit</artifactId>
          <version>3.8.1</version>
          <scope>test</scope>
        </dependency>
        
        <dependency>
           <groupId>org.apache.storm</groupId>
           <artifactId>storm-core</artifactId>
           <version>1.1.0</version>
           <scope>provided</scope>
        </dependency>
        
        <dependency>
                <groupId>org.twitter4j</groupId>
                <artifactId>twitter4j-stream</artifactId>
                <version>3.0.3</version>
       </dependency>
       
       <dependency>
                <groupId>commons-collections</groupId>
                <artifactId>commons-collections</artifactId>
                <version>3.2.1</version>
        </dependency>
        
        <dependency>
                <groupId>com.google.guava</groupId>
                <artifactId>guava</artifactId>
                <version>13.0</version>
        </dependency>
        
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.10</artifactId>
            <version>0.10.0.1</version>
            <exclusions>  
              <exclusion>  
                   <groupId>org.apache.zookeeper</groupId>  
                   <artifactId>zookeeper</artifactId>  
              </exclusion>  
              <exclusion>  
                   <groupId>log4j</groupId>  
                   <artifactId>log4j</artifactId>  
              </exclusion>  
              <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
         </exclusions>
        </dependency>
        
        <dependency>
            <groupId>org.apache.storm</groupId>
            <artifactId>storm-kafka</artifactId>
            <version>1.1.0</version>
        </dependency>
        
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>0.10.0.1</version>
        </dependency>
        
        
        <!-- mysql maven相关依赖 -->  
        <dependency>  
             <groupId>commons-dbutils</groupId>  
             <artifactId>commons-dbutils</artifactId>  
             <version>1.6</version>  
        </dependency>  

        <dependency>
            <groupId>org.apache.storm</groupId>
            <artifactId>storm-jdbc</artifactId>
            <version>1.0.5</version>
        </dependency>
            
        <!-- druid数据源 -->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid</artifactId>
            <version>1.0.27</version>
        </dependency>
        <dependency>
             <groupId>redis.clients</groupId>
             <artifactId>jedis</artifactId>
             <version>2.7.3</version>
        </dependency>
        <dependency>  
             <groupId>mysql</groupId>  
             <artifactId>mysql-connector-java</artifactId>  
             <version>5.1.29</version>  
        </dependency>    
        <dependency>
                <groupId>c3p0</groupId>
                <artifactId>c3p0</artifactId>
                <version>0.9.1.2</version>
        </dependency> 
     
     
    2、编写Storm程序
     import java.util.Map;

    import org.apache.storm.task.OutputCollector;
    import org.apache.storm.task.TopologyContext;
    import org.apache.storm.topology.IRichBolt;
    import org.apache.storm.topology.OutputFieldsDeclarer;
    import org.apache.storm.tuple.Fields;
    import org.apache.storm.tuple.Tuple;
    import org.apache.storm.tuple.Values;

    public class WordSplitBolt implements IRichBolt {

        /**
         *
         */
        private static final long serialVersionUID = 1L;
        private OutputCollector collector;
        
        public void prepare(Map mapConf, TopologyContext context, OutputCollector collector) {
            this.collector = collector;
        }

        public void execute(Tuple tuple) {
            String line = tuple.getString(0);
            String[] arr = line.split(" ");
            for (String s : arr) {
                collector.emit(new Values(s,1));
            }
            
            collector.ack(tuple);
        }


        public void declareOutputFields(OutputFieldsDeclarer declarer) {
            declarer.declare(new Fields("word","count"));
        }

        public Map<String, Object> getComponentConfiguration() {
            // TODO Auto-generated method stub
            return null;
        }

        public void cleanup() {
            // TODO Auto-generated method stub
            
        }

    }
     
     
     

    import java.sql.SQLException;
    import java.util.HashMap;
    import java.util.Map;

    import org.apache.storm.task.OutputCollector;
    import org.apache.storm.task.TopologyContext;
    import org.apache.storm.topology.IRichBolt;
    import org.apache.storm.topology.OutputFieldsDeclarer;
    import org.apache.storm.tuple.Fields;
    import org.apache.storm.tuple.Tuple;
    import org.apache.storm.tuple.Values;

    public class WordCountBolt implements IRichBolt {
        private static final long serialVersionUID = 1L;
        private long lastEmitTime = 0;//设置清分时间
        
        private long duration = 5000;//时间片,5秒钟清分一次

        private OutputCollector collector;
        Map<String, Integer> map;
        public void prepare(Map mapConf, TopologyContext context, OutputCollector collector) {
            this.map = new HashMap<String, Integer>();
            this.collector = collector;
        }

        public void execute(Tuple tuple) {
            String word = tuple.getString(0);
            Integer count = tuple.getInteger(1);
            if(!map.containsKey(word)){
                map.put(word, 1);
            }else{
                Integer c = map.get(word)+1;//有的话取出来原来的记录,并在原有的记录上+1;
                map.put(word, c);  //在放进去
            }
            collector.ack(tuple);
        }


        public void declareOutputFields(OutputFieldsDeclarer declarer) {

        }

        public Map<String, Object> getComponentConfiguration() {
            // TODO Auto-generated method stub
            return null;
        }

        public void cleanup() {
             for(Map.Entry<String, Integer> entry:map.entrySet()){
                 System.out.println(entry.getKey()+" : " +entry.getValue());
                 try {
                    MyDbUtils.update(MyDbUtils.INSERT_LOG,entry.getKey(),entry.getValue());
                } catch (SQLException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
              }
        }

    }

     

     

     

     
    3 编写MyDbUtils工具类
     import java.sql.Connection;
    import java.sql.DriverManager;
    import java.sql.ResultSet;
    import java.sql.SQLException;
    import java.util.ArrayList;
    import java.util.List;

    import org.apache.commons.dbutils.BasicRowProcessor;
    import org.apache.commons.dbutils.QueryRunner;
    import org.apache.commons.dbutils.handlers.ArrayListHandler;

    public class MyDbUtils {
        private static String className = "com.mysql.jdbc.Driver";

        private static QueryRunner queryRunner = new QueryRunner();
        public static final String INSERT_LOG = "INSERT INTO "+JdbcUtils.getTable_name()+"(word,count) VALUES (?,?)";
        
        static{
            try {
                Class.forName(className);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }

        static void update(String sql,Object... params) throws SQLException {
             Connection connection = getConnection();  
             //更新数据  
             queryRunner.update(connection,sql, params);  
             connection.close();  
        }

        
        public static List<String> executeQuerySql(String sql){
            List<String> result = new ArrayList<String>();  
            try {  
                 List<Object[]> requstList = queryRunner.query(getConnection(), sql,  
                           new ArrayListHandler(new BasicRowProcessor() {  
                                @Override  
                                public <Object> List<Object> toBeanList(ResultSet rs,  
                                          Class<Object> type) throws SQLException {  
                                     return super.toBeanList(rs, type);  
                                }  
                           }));  
                 for (Object[] objects : requstList) {  
                      result.add(objects[0].toString());  
                 }  
            } catch (SQLException e) {  
                 e.printStackTrace();  
            }  
            return result;  
        }
        private static Connection getConnection() throws SQLException {
            //获取mysql连接  
            return DriverManager.getConnection(JdbcUtils.getUrl(),JdbcUtils.getUser(),JdbcUtils.getPassword());
        }
    }
     
    4.编写JdbcUtils程序
    public class JdbcUtils {

        private static String url;
        private static String user;
        private static String password;    
        private static String table_name;
        
        

        public static String getTable_name() {
            return table_name;
        }
        public static void setTable_name(String table_name) {
            JdbcUtils.table_name = table_name;
        }
        public static String getUrl() {
            return url;
        }
        public static void setUrl(String url) {
            JdbcUtils.url = url;
        }
        public static String getUser() {
            return user;
        }
        public static void setUser(String user) {
            JdbcUtils.user = user;
        }
        public static String getPassword() {
            return password;
        }
        public static void setPassword(String password) {
            JdbcUtils.password = password;
        }
        public JdbcUtils(String url, String user, String password,String table_name) {
            this.url = url;
            this.user = user;
            this.password = password;
            this.table_name = table_name;
        }
        
    }
     
    5.编写Mytopology程序
    import java.util.UUID;

    import org.apache.storm.Config;
    import org.apache.storm.LocalCluster;
    import org.apache.storm.StormSubmitter;
    import org.apache.storm.kafka.BrokerHosts;
    import org.apache.storm.kafka.KafkaSpout;
    import org.apache.storm.kafka.SpoutConfig;
    import org.apache.storm.kafka.StringScheme;
    import org.apache.storm.kafka.ZkHosts;
    import org.apache.storm.spout.SchemeAsMultiScheme;
    import org.apache.storm.topology.TopologyBuilder;
    import org.apache.storm.tuple.Fields;

    public class Mytopology {
        public void Mytopologys(String zkConnString,String topic,String url,String user,String password,String table_name) throws InterruptedException{
              JdbcUtils ju = new JdbcUtils(url,user,password,table_name);
              Config config = new Config();
              config.setDebug(true);
              config.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
              BrokerHosts hosts = new ZkHosts(zkConnString);
              SpoutConfig kafkaSpoutConfig = new SpoutConfig (hosts, topic, "/" + topic,UUID.randomUUID().toString());
              kafkaSpoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
              
              TopologyBuilder builder = new TopologyBuilder();
              builder.setSpout("kafka-spout", new KafkaSpout(kafkaSpoutConfig));
              builder.setBolt("word-spitter", new WordSplitBolt()).shuffleGrouping("kafka-spout");
              builder.setBolt("word-counter", new WordCountBolt()).fieldsGrouping("word-spitter", new Fields("word"));
                 
              LocalCluster cluster = new LocalCluster();
              cluster.submitTopology("KafkaStormSample", config, builder.createTopology());

              Thread.sleep(15000);
              
              cluster.shutdown();
        }
    }

    6.最后测试程序是否能实现
    注意:运行此程序时先启动flume,配置好kafka
    public class Test1 {
        public static void main(String[] args) throws Exception {
            Mytopology mp = new Mytopology();
            mp.Mytopologys("zkConnString", "topic","数据库的url","数据库user","数据库password","tableName");
        }
    }
     
     
  • 相关阅读:
    Linux系统备份与恢复
    CentOS7修改设置静态IP和DNS
    CentOS系统基础优化16条知识汇总
    CentOS英文提示修改为中文提示的方法
    CentOS修改主机名和网络信息
    CentOS 7系统查看系统版本和机器位数
    Linux下设置SSH Server设置时间链接限制
    查看Linux下系统资源占用常用命令(top、free、uptime)
    查看CentOS系统运行了多久使用uptime命令
    设计模式(七)学习----命令模式
  • 原文地址:https://www.cnblogs.com/zzmmyy/p/7987029.html
Copyright © 2011-2022 走看看