zoukankan      html  css  js  c++  java
  • poj-2369-置换

      

    Permutations

     
    We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Less formally, that is a way to reorder elements of the set. For example, one can define a permutation of the set {1,2,3,4,5} as follows: 
     
    This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc. 
    What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us) 
     
    It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing: 
     
    It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P. 
    The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."

    Input

    In the first line of the standard input an only natural number N (1 <= N <= 1000) is contained, that is a number of elements in the set that is rearranged by this permutation. In the second line there are N natural numbers of the range from 1 up to N, separated by a space, that define a permutation — the numbers P(1), P(2),…, P(N).

    Output

    You should write an only natural number to the standard output, that is an order of the permutation. You may consider that an answer shouldn't exceed 10 9.

    Sample Input

    5
    4 1 5 2 3
    

    Sample Output

    6
      给出一个置换A,求使得A^k=A成立的最小的k值。
      先把A分解成若干个循环的乘积,A=p1*p2*...*pm ,答案就是lcm(|p1|,|p2|,,,,|pm|);
    每个循环只要执行|p1|次就会回到初始状态,所以找到一个最小公倍数使得所有循环都回到初始状态。
      
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<map>
     5 #include<set>
     6 #include<vector>
     7 #include<algorithm>
     8 #include<cmath> 
     9 using namespace std;
    10 #define LL long long 
    11 #define PI acos(-1.0)
    12 int gcd(int a,int b){return b==0?a:gcd(b,a%b);}
    13 int lcm(int a,int b){return a*b/gcd(a,b);}
    14 int a[1010];
    15 bool v[1010];
    16 int main()
    17 {
    18     int T,n,m,k,i,j,d;
    19     while(scanf("%d",&n)!=EOF){
    20         int ans=1;
    21         for(i=1;i<=n;++i){
    22             scanf("%d",&a[i]);
    23         }
    24         memset(v,0,sizeof(v));
    25         for(i=1;i<=n;++i){
    26             if(!v[i]){
    27                 int tmp=0;
    28                 j=i;
    29                 while(!v[j]){
    30                     tmp++;
    31                     v[j]=1;
    32                     j=a[j];
    33                 }
    34                 ans=lcm(ans,tmp);
    35             }
    36         }
    37         cout<<ans<<endl;
    38     }
    39     return 0;
    40 }
     
  • 相关阅读:
    IBM WebSphere MQ 7.5基本用法
    IBM WebSphere MQ介绍安装以及配置服务详解
    Windows平台上使用Github搭建Git服务器的图文教程
    Git安装和TortoiseGit详细使用教程【基础篇】
    DOS命令之at命令详解
    单元测试数据库 -- 使用事物回滚测试
    VS中实时获取SVN的版本号并写入到AssemblyInfo.cs中
    SQL2008中Merge的用法
    VS版本号定义、规则和相关的Visual Studio插件
    JSON字符串互相转换的三种方式和性能比较
  • 原文地址:https://www.cnblogs.com/zzqc/p/9442684.html
Copyright © 2011-2022 走看看