zoukankan      html  css  js  c++  java
  • poj-2369-置换

      

    Permutations

     
    We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Less formally, that is a way to reorder elements of the set. For example, one can define a permutation of the set {1,2,3,4,5} as follows: 
     
    This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc. 
    What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us) 
     
    It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing: 
     
    It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P. 
    The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."

    Input

    In the first line of the standard input an only natural number N (1 <= N <= 1000) is contained, that is a number of elements in the set that is rearranged by this permutation. In the second line there are N natural numbers of the range from 1 up to N, separated by a space, that define a permutation — the numbers P(1), P(2),…, P(N).

    Output

    You should write an only natural number to the standard output, that is an order of the permutation. You may consider that an answer shouldn't exceed 10 9.

    Sample Input

    5
    4 1 5 2 3
    

    Sample Output

    6
      给出一个置换A,求使得A^k=A成立的最小的k值。
      先把A分解成若干个循环的乘积,A=p1*p2*...*pm ,答案就是lcm(|p1|,|p2|,,,,|pm|);
    每个循环只要执行|p1|次就会回到初始状态,所以找到一个最小公倍数使得所有循环都回到初始状态。
      
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<map>
     5 #include<set>
     6 #include<vector>
     7 #include<algorithm>
     8 #include<cmath> 
     9 using namespace std;
    10 #define LL long long 
    11 #define PI acos(-1.0)
    12 int gcd(int a,int b){return b==0?a:gcd(b,a%b);}
    13 int lcm(int a,int b){return a*b/gcd(a,b);}
    14 int a[1010];
    15 bool v[1010];
    16 int main()
    17 {
    18     int T,n,m,k,i,j,d;
    19     while(scanf("%d",&n)!=EOF){
    20         int ans=1;
    21         for(i=1;i<=n;++i){
    22             scanf("%d",&a[i]);
    23         }
    24         memset(v,0,sizeof(v));
    25         for(i=1;i<=n;++i){
    26             if(!v[i]){
    27                 int tmp=0;
    28                 j=i;
    29                 while(!v[j]){
    30                     tmp++;
    31                     v[j]=1;
    32                     j=a[j];
    33                 }
    34                 ans=lcm(ans,tmp);
    35             }
    36         }
    37         cout<<ans<<endl;
    38     }
    39     return 0;
    40 }
     
  • 相关阅读:
    Django之admin
    Django之CSRF(跨站请求伪造)
    Django之Cookie
    Django之Session
    Django|第一部
    简单的udp消息收发
    .net core里使用ado.net访问sqlserver数据库
    CentOS8中安装SQLServer
    CentOS里配置.net core运行环境(含后台运行,附ssh长连接)
    发布"dotNet core"到CentOS8
  • 原文地址:https://www.cnblogs.com/zzqc/p/9442684.html
Copyright © 2011-2022 走看看