zoukankan      html  css  js  c++  java
  • hdu-4180-exgcd

    RealPhobia

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 938    Accepted Submission(s): 435


    Problem Description
    Bert is a programmer with a real fear of floating point arithmetic. Bert has quite successfully used rational numbers to write his programs but he does not like it when the denominator grows large. Your task is to help Bert by writing a program that decreases the denominator of a rational number, whilst introducing the smallest error possible. For a rational number A/B, where B > 2 and 0 < A < B, your program needs to identify a rational number C/D such that:
    1. 0 < C < D < B, and
    2. the error |A/B - C/D| is the minimum over all possible values of C and D, and
    3. D is the smallest such positive integer.
     
    Input
    The input starts with an integer K (1 <= K <= 1000) that represents the number of cases on a line by itself. Each of the following K lines describes one of the cases and consists of a fraction formatted as two integers, A and B, separated by “/” such that:
    1. B is a 32 bit integer strictly greater than 2, and
    2. 0 < A < B
     
    Output
    For each case, the output consists of a fraction on a line by itself. The fraction should be formatted as two integers separated by “/”.
     
    Sample Input
    3 1/4 2/3 13/21
     
    Sample Output
    1/3 1/2 8/13
     
    Source
     

         | A/B - C/D |= minn   <=>  | AD - BC| / BD =minn 

        如果AB可以约分的话直接约分就是答案。否则说明 gcd(A,B)=1, 我们有 A*D+B*C = gcd(A,B) = 1,原分子加了绝对值,有两种情况

    D>0,C<0 或者是 D<0,C>0  ,解完之后对D分正负讨论一下那个使得分母更大就选那个,分子已经是1了。

      因为D<B,所以记得%B,正负分别对应唯一的一个解。

      

     1 #include<iostream>
     2 #include<cstdio>
     3 using namespace std;
     4 #define LL long long 
     5 #define mp make_pair
     6 #define pb push_back
     7 #define inf 0x3f3f3f3f
     8 void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
     9     if(!b){d=a;x=1;y=0;}
    10     else{exgcd(b,a%b,d,y,x);y-=x*(a/b);}
    11 }
    12 int main(){
    13     LL a,b,d,x,y;
    14     int t;
    15     cin>>t;
    16     while(t--){
    17         scanf("%lld/%lld",&a,&b);
    18         exgcd(a,b,d,x,y);
    19         if(d!=1){
    20             printf("%lld/%lld
    ",a/d,b/d);
    21         }
    22         else{
    23             LL d1,d2,c1,c2;
    24             d1=(x%b+b)%b,c1=-(1-a*d1)/b;
    25             d2=-(x%b-b)%b,c2=(1+a*d2)/b;
    26             if(d1>d2){
    27                 printf("%lld/%lld
    ",c1,d1);
    28             }
    29             else{
    30                 printf("%lld/%lld
    ",c2,d2); 
    31             }
    32         }
    33     }
    34     return 0;
    35 }
  • 相关阅读:
    python字典实现原理-哈希函数-解决哈希冲突方法
    ElasticSearch-倒排索引
    ElasticSearch-核心概念
    MarkdownPad2基础语法
    下载python3.6,进行编译安装,运行django程序
    linux-指令1
    注解和反射
    Htlm和Css
    JAVASE加强
    网络编程
  • 原文地址:https://www.cnblogs.com/zzqc/p/9474746.html
Copyright © 2011-2022 走看看