zoukankan      html  css  js  c++  java
  • 证明adaboost和使用指数损失函数的前向可加模型的等价性

    Why Adaboost is equivalent to forward stagewise additive modeling using the loss function (L(y,f(x))=exp(-yf(x)))?

    First we consider forward stagewise additive modeling using the loss function (L(y,f(x))=exp(-yf(x)))

    Using the exponential loss function, one must solve:

    [left(eta_{m}, G_{m} ight)=arg min _{eta, G} sum_{i=1}^{N} exp left[-y_{i}left(f_{m-1}left(x_{i} ight)+eta Gleft(x_{i} ight) ight) ight] ]

    we denote (w_{i}^{(m)}=exp left(-y_{i} f_{m-1}left(x_{i} ight) ight)),then:

    [left(eta_{m}, G_{m} ight)=arg min _{eta, G} sum_{i=1}^{N} w_{i}^{(m)} exp left(-eta y_{i} Gleft(x_{i} ight) ight) ]

    Since when (y_{i} =G(x_{i})),(exp left(-eta y_{i} Gleft(x_{i} ight) ight)=1);when (y_{i} eq G(x_{i})),(exp left(-eta y_{i} Gleft(x_{i} ight) ight)=-1)

    we can rewrite (sum_{i=1}^{N} w_{i}^{(m)} exp left(-eta y_{i} Gleft(x_{i} ight) ight)) as:

    [e^{-eta} cdot sum_{y_{i}=Gleft(x_{i} ight)} w_{i}^{(m)}+e^{eta} cdot sum_{y_{i} eq Gleft(x_{i} ight)} w_{i}^{(m)} ]

    which is equivalent as:

    [left(e^{eta}-e^{-eta} ight) cdot sum_{i=1}^{N} w_{i}^{(m)} Ileft(y_{i} eq Gleft(x_{i} ight) ight)+e^{-eta} cdot sum_{i=1}^{N} w_{i}^{(m)} ]

    Therefore, the optimization of G and w are independent:

    [G_{m}=arg min _{G} sum_{i=1}^{N} w_{i}^{(m)} Ileft(y_{i} eq Gleft(x_{i} ight) ight) ]

    plugging this (G_m) into object function taking derivative to (eta), we have:

    [left(e^{eta}+e^{-eta} ight) cdot sum_{i=1}^{N} w_{i}^{(m)} Ileft(y_{i} eq G_mleft(x_{i} ight) ight)=e^{-eta} cdot sum_{i=1}^{N} w_{i}^{(m)} ]

    [e^{2eta}+1=frac{sum_{i=1}^{N} w_{i}^{(m)} Ileft(y_{i} eq G_mleft(x_{i} ight) ight)}{sum_{i=1}^{N} w_{i}^{(m)}} ]

    Thus:

    [eta_{m}=frac{1}{2} log frac{1-operatorname{err}_{m}}{operatorname{err}_{m}} ]

    where

    [operatorname{err}_{m}=frac{sum_{i=1}^{N} w_{i}^{(m)} Ileft(y_{i} eq G_{m}left(x_{i} ight) ight)}{sum_{i=1}^{N} w_{i}^{(m)}} ]

    Since we use forward stagewise additive modeling,

    [f_{m}(x)=f_{m-1}(x)+eta_{m} G_{m}(x) ]

    we have:

    [egin{aligned} w_{i}^{(m+1)}&=exp left(-y_{i} f_{m}left(x_{i} ight) ight)\&=exp(-y_i(f_{m-1}(x)+eta_{m} G_{m}(x)))\&=w_{i}^{(m)} cdot e^{-eta_{m} y_{i} G_{m}left(x_{i} ight)} end{aligned} ]

    Since (-y_{i} G_{m}left(x_{i} ight)=2 cdot Ileft(y_{i} eq G_{m}left(x_{i} ight) ight)-1), then

    we can rewrite the above equation as

    [w_{i}^{(m+1)}=w_{i}^{(m)} cdot e^{alpha_{m} Ileft(y_{i} eq G_{m}left(x_{i} ight) ight)} cdot e^{-eta_{m}} ]

    Where (alpha_{m}=2 eta_{m})

    we can ignore the factors (e^{-eta_m}) since it is multiplied all weights by the same value.

    [w_{i}^{(m+1)}=w_{i}^{(m)} cdot e^{alpha_{m} Ileft(y_{i} eq G_{m}left(x_{i} ight) ight)} ]

    also, we have:

    [alpha_{m}=log frac{1-operatorname{err}_{m}}{operatorname{err}_{m}} ]

    Compare it with adaboost, we can find that this is the same algorithm as Adaboost.

    本文为跑得飞快的凤凰花原创,如需转载,请标明出处~
  • 相关阅读:
    C#练习代码
    docker部署gitlab
    vim 缩进设置
    css 初步学习笔记
    tomcat
    201871010107公海瑜《面向对象程序设计(java)》第一周学习总结 公海瑜
    发现JavaScript真强大
    今天看了一點ant的內容,受益匪浅
    一道趣味問題
    一個挺適合初學者的Ant教程
  • 原文地址:https://www.cnblogs.com/zzqingwenn/p/12864245.html
Copyright © 2011-2022 走看看