zoukankan      html  css  js  c++  java
  • LOJ#6041「雅礼集训 2017 Day7」事情的相似度

    题目大意

    一个长度为(n)(01)串,(q)次询问,每次询问求([l,r])内的前缀选两个出来,(lcp)的最大值。

    LCT做法

    就是求两两(lca)深度的最大值。
    询问按右端点排序,每加一个右端点就看一下跟每个左端点(l)(lca)深度是多少,就可以更新(l)及以前的答案了。

    (LCT) (access)(lca)的方法得到启发。
    这个过程就是每次从一个点往上跳,每遇到一种颜色就把这个颜色的答案跟遇到的点深度取(max)(跟这个颜色的(lca)就是第一次遇到的点),然后把一整条链染色(编号大的颜色可以覆盖编号小的颜色,因为每次更新答案都是更新一个前缀)。
    任何时刻一种颜色都会形成一条链,用(LCT)的一条实链表示颜色相同的点,边(access)边更新答案并染色即可。
    居然(1A)

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int mxn=200010;
    int rd(){
    	int x=0,flg=1;
    	char c=getchar();
    	for (;(c<48||c>57)&&c!='-';c=getchar());
    	if (c=='-') flg=-1,c=getchar();
    	for (;c>47&&c<58;x=x*10+c-48,c=getchar());
    	return flg*x;
    }
    int n,tr[mxn];
    void add(int i,int x){
    	i=n-i+1;
    	for (;i<=n;i+=i&-i) tr[i]=max(tr[i],x);
    }
    int sum(int i){
    	i=n-i+1;
    	int ret=0;
    	for (;i;i-=i&-i) ret=max(ret,tr[i]);
    	return ret;
    }
    struct nd{
    	int dep,tag;
    	nd *ls,*rs,*fa;
    }pool[mxn],*tp=pool;
    bool noroot(nd *i){
    	return i->fa&&(i->fa->ls==i||i->fa->rs==i);
    }
    void pushdown(nd *i){
    	if (i->ls) i->ls->tag=i->tag;
    	if (i->rs) i->rs->tag=i->tag;
    }
    void rotate(nd *i){
    	nd *f=i->fa,*s;
    	if (noroot(f))
    		if (f->fa->ls==f) f->fa->ls=i;
    		else f->fa->rs=i;
    	else;
    	i->fa=f->fa,f->fa=i;
    	if (f->ls==i) f->ls=s=i->rs,i->rs=f;
    	else f->rs=s=i->ls,i->ls=f;
    	if (s) s->fa=f;
    }
    nd *stk[mxn];
    void splay(nd *x){
    	int tpp=1;
    	stk[1]=x;
    	for (nd *y=x;noroot(y);stk[++tpp]=y=y->fa);
    	for (;tpp;pushdown(stk[tpp--]));
    	for (nd *y;noroot(x);rotate(x))
    		if (noroot(y=x->fa)) rotate((y->fa->ls==y)^(y->ls==x)?x:y);
    }
    void access(nd *x,int tg){
    	for (nd *y=0;x;x=(y=x)->fa){
    		splay(x),x->rs=y;
    		add(x->tag,x->dep);
    		x->tag=tg;
    	}
    }
    int cur,tot,fa[mxn],len[mxn],trans[mxn][2],idx[mxn];
    nd *id[mxn];
    char s[mxn];
    int ins(int u,int c){
    	int x=++tot,v;
    	len[x]=len[u]+1;
    	for (;u&&!trans[u][c];trans[u][c]=x,u=fa[u]);
    	if (!u) fa[x]=1;
    	else if (len[v=trans[u][c]]==len[u]+1) fa[x]=v;
    	else{
    		fa[++tot]=fa[v],fa[x]=fa[v]=tot,len[tot]=len[u]+1;
    		for (int i=0;i<2;++i) trans[tot][i]=trans[v][i];
    		for (;u&&trans[u][c]==v;trans[u][c]=tot,u=fa[u]);
    	}
    	return x;
    }
    struct ndd{
    	int l,r,id;
    	bool operator<(const ndd a)const{
    		return r<a.r;
    	}
    }a[mxn];
    int q,ans[mxn];
    int main()
    {
    	scanf("%d%d%s",&n,&q,s);
    	cur=tot=1;
    	for (int i=0;i<n;++i) idx[i+1]=cur=ins(cur,s[i]-'0');
    	for (int i=1;i<=tot;++i) id[i]=++tp,tp->dep=len[i];
    	for (int i=2;i<=tot;++i) id[i]->fa=id[fa[i]];
    	for (int i=1;i<=q;++i)
    		a[i].l=rd(),a[i].r=rd(),a[i].id=i;
    	sort(a+1,a+q+1);
    	for (int i=1,cur=1;i<=q;++i){
    		for (;cur<=a[i].r;access(id[idx[cur]],cur),++cur);
    		ans[a[i].id]=sum(a[i].l);
    	}
    	for (int i=1;i<=q;++i)
    		printf("%d
    ",ans[i]);
    	return 0;
    }
    

    启发式合并+二维数点做法

    每个点维护(endpos)集合。
    考虑合并两个集合会对哪些询问造成贡献。两个来自不同集合的(endpos) (x,y) ((x<y)),更新包含([x,y])的询问。
    发现只有(O(n))个区间是有用的,其他都包含了这些区间,不用计算。进一步分析较小集合的每个数最多只会造成两个贡献的区间(另一个集合中的前驱后继)。
    把所有这样的区间拉出来,根据启发式合并总数是(nlogn)级别的。
    然后就是一个二维数点,可以用树状数组来做。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<set>
    using namespace std;
    int rd(){
    	int x=0,flg=1;
    	char c=getchar();
    	for (;(c<48||c>57)&&c!='-';c=getchar());
    	if (c=='-') flg=-1,c=getchar();
    	for (;c>47&&c<58;x=x*10+c-48,c=getchar());
    	return flg*x;
    }
    const int mxn=200010;
    struct nd{
    	int l,r,x;
    	bool operator<(const nd a)const{
    		return l>a.l;
    	}
    }a[mxn<<5],b[mxn];
    int n,cur,tot,fa[mxn],len[mxn],id[mxn],trans[mxn][2];
    char s[mxn];
    int ins(int u,int c,int idd){
    	int x=++tot,v;
    	id[x]=idd,len[x]=len[u]+1;
    	for (;u&&!trans[u][c];trans[u][c]=x,u=fa[u]);
    	if (!u) fa[x]=1;
    	else if (len[v=trans[u][c]]==len[u]+1) fa[x]=v;
    	else{
    		fa[++tot]=fa[v],fa[x]=fa[v]=tot;
    		id[tot]=idd,len[tot]=len[u]+1;
    		for (int i=0;i<2;++i) trans[tot][i]=trans[v][i];
    		for (;u&&trans[u][c]==v;trans[u][c]=tot,u=fa[u]);
    	}
    	return x;
    }
    int head[mxn],son[mxn][2],idd[mxn],N,M;
    set<int> lis[mxn];
    void dfs(int u){
    	if (!son[u][0]&&!son[u][1]){
    		idd[u]=++M;
    		lis[M].insert(id[u]+1);
    		return;
    	}
    	if (son[u][0]) dfs(son[u][0]);
    	if (son[u][1]) dfs(son[u][1]);
    	int ls=idd[son[u][0]],rs=idd[son[u][1]];
    	if (lis[ls].size()<lis[rs].size()) swap(ls,rs);
    	set<int>::iterator sx=lis[rs].begin();
    	for (;sx!=lis[rs].end();sx++){
    		int x=*sx;
    		set<int>::iterator sl=lis[ls].lower_bound(x),sr=sl;
    		if (sl!=lis[ls].begin()){
    			sl--;
    			a[++N]=(nd){*sl,x,len[u]};
    		}
    		if (sr!=lis[ls].end()){
    			a[++N]=(nd){x,*sr,len[u]};
    		}
    	}
    	idd[u]=ls;
    	sx=lis[rs].begin();
    	for (;sx!=lis[rs].end();sx++) lis[ls].insert(*sx);
    	if (id[u]+1==len[u]){
    		int x=id[u]+1;
    		set<int>::iterator sl=lis[ls].lower_bound(x),sr=sl;
    		if (sl!=lis[ls].begin()){
    			sl--;
    			a[++N]=(nd){*sl,x,len[u]};
    		}
    		if (sr!=lis[ls].end()){
    			a[++N]=(nd){x,*sr,len[u]};
    		}
    		lis[ls].insert(x);
    	}
    }
    void init(){
    	cur=tot=1;
    	for (int i=0;i<n;++i) cur=ins(cur,s[i]-'0',i);
    	for (int i=2;i<=tot;++i)
    		son[fa[i]][s[id[i]-len[fa[i]]]-'0']=i;
    	dfs(1);
    }
    int q,tr[mxn],ans[mxn];
    void add(int i,int x){
    	for (;i<=n;i+=i&-i) tr[i]=max(tr[i],x);
    }
    int sum(int i){
    	int ret=0;
    	for (;i;i-=i&-i) ret=max(ret,tr[i]);
    	return ret;
    }
    int main()
    {
    //	freopen("history.in","r",stdin);
    //	freopen("hist.out","w",stdout);
    	scanf("%d%d%s",&n,&q,s);
    	init();
    	for (int i=1;i<=q;++i){
    		int l=rd(),r=rd();
    		b[i]=(nd){l,r,i};
    	}
    	sort(a+1,a+N+1);
    	sort(b+1,b+q+1);
    	for (int i=1,cur=1;i<=q;++i){
    		for (;cur<=N&&a[cur].l>=b[i].l;add(a[cur].r,a[cur].x),++cur);
    		ans[b[i].x]=sum(b[i].r);
    	}
    	for (int i=1;i<=q;++i)
    		printf("%d
    ",ans[i]);
    	return 0;
    }
    
  • 相关阅读:
    java集合:ArrayList(1)
    java虚拟机:堆内存
    计算机三种编码与加减运算
    java虚拟机:程序计数器
    java虚拟机:JIT编译器
    java虚拟机:运行时常量池
    java虚拟机:方法区
    java虚拟机:本地方法栈
    java虚拟机:class文件结构
    linux安装mysql
  • 原文地址:https://www.cnblogs.com/zzqtxdy/p/12184870.html
Copyright © 2011-2022 走看看