zoukankan      html  css  js  c++  java
  • 1067

    1067 - Combinations
    Time Limit: 2 second(s) Memory Limit: 32 MB

    Given n different objects, you want to take k of them. How many ways to can do it?

    For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.

    Take 1, 2

    Take 1, 3

    Take 1, 4

    Take 2, 3

    Take 2, 4

    Take 3, 4

    Input

    Input starts with an integer T (≤ 2000), denoting the number of test cases.

    Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).

    Output

    For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.

    Sample Input

    Output for Sample Input

    3

    4 2

    5 0

    6 4

    Case 1: 6

    Case 2: 1

    Case 3: 15


    Problem Setter: Jane Alam Jan
    思路:费马小定理。
    这个是组合数取模,有卢卡斯定理可以解决,但还没学,所以用费马小定理和快速幂水了一发。
    当然先打表求阶乘取模,然后根据组合数公式Cnm=(m!)/((n!)*(m-n)!);
    由于所给的数是1000003,素数,(n!)*(m-n)!,不能整除,根据(p/q)%N=k%N;其中k为所要求的数,
    那么可以得到(p)%N=k*q%N;所以用费马小定理求下q的逆元就可以了,复杂度(N*log(N));
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<math.h>
     5 #include<stdlib.h>
     6 #include<string.h>
     7 using namespace std;
     8 typedef long long LL;
     9 const long long N=1e6+3;
    10 long long MM[1000005];
    11 long long quick(long long n,long m);
    12 int main(void)
    13 {
    14     long long p,q;MM[0]=1;
    15     MM[1]=1;int i,j;
    16     for(i=2;i<=1000000;i++)
    17     {
    18         MM[i]=(MM[i-1]%N*(i))%N;
    19     }int v;
    20     scanf("%d",&v);
    21     for(j=1;j<=v;j++)
    22     {scanf("%lld %lld",&p,&q);
    23         long long x=MM[q]*MM[p-q]%N;
    24         long long cc=quick(x,N-2);
    25         long long ans=MM[p]*cc%N;
    26         printf("Case %d: ",j);
    27         printf("%lld
    ",ans);
    28     }
    29     return 0;
    30 }
    31 
    32 long long quick(long long n,long m)
    33 {
    34     long long k=1;
    35     while(m)
    36     {
    37         if(m&1)
    38         {
    39             k=(k%N*n%N)%N;
    40         }
    41         n=n*n%N;
    42         m/=2;
    43     }
    44     return k;
    45 }
    油!油!you@
  • 相关阅读:
    @PostConstruct和 @PreDestroy注解
    【JQuery】,ajax请求中,url出现[Object Object]
    筛法求素数
    母牛的故事
    将一个数拆分
    计算两个日期差
    用二分查找——查找比目标元素略大的索引
    反向输出字符串
    bootstrap table合并单元格(该版本是简单的应用)
    获取访问者IP
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5342706.html
Copyright © 2011-2022 走看看