zoukankan      html  css  js  c++  java
  • 1067

    1067 - Combinations
    Time Limit: 2 second(s) Memory Limit: 32 MB

    Given n different objects, you want to take k of them. How many ways to can do it?

    For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.

    Take 1, 2

    Take 1, 3

    Take 1, 4

    Take 2, 3

    Take 2, 4

    Take 3, 4

    Input

    Input starts with an integer T (≤ 2000), denoting the number of test cases.

    Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).

    Output

    For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.

    Sample Input

    Output for Sample Input

    3

    4 2

    5 0

    6 4

    Case 1: 6

    Case 2: 1

    Case 3: 15


    Problem Setter: Jane Alam Jan
    思路:费马小定理。
    这个是组合数取模,有卢卡斯定理可以解决,但还没学,所以用费马小定理和快速幂水了一发。
    当然先打表求阶乘取模,然后根据组合数公式Cnm=(m!)/((n!)*(m-n)!);
    由于所给的数是1000003,素数,(n!)*(m-n)!,不能整除,根据(p/q)%N=k%N;其中k为所要求的数,
    那么可以得到(p)%N=k*q%N;所以用费马小定理求下q的逆元就可以了,复杂度(N*log(N));
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<math.h>
     5 #include<stdlib.h>
     6 #include<string.h>
     7 using namespace std;
     8 typedef long long LL;
     9 const long long N=1e6+3;
    10 long long MM[1000005];
    11 long long quick(long long n,long m);
    12 int main(void)
    13 {
    14     long long p,q;MM[0]=1;
    15     MM[1]=1;int i,j;
    16     for(i=2;i<=1000000;i++)
    17     {
    18         MM[i]=(MM[i-1]%N*(i))%N;
    19     }int v;
    20     scanf("%d",&v);
    21     for(j=1;j<=v;j++)
    22     {scanf("%lld %lld",&p,&q);
    23         long long x=MM[q]*MM[p-q]%N;
    24         long long cc=quick(x,N-2);
    25         long long ans=MM[p]*cc%N;
    26         printf("Case %d: ",j);
    27         printf("%lld
    ",ans);
    28     }
    29     return 0;
    30 }
    31 
    32 long long quick(long long n,long m)
    33 {
    34     long long k=1;
    35     while(m)
    36     {
    37         if(m&1)
    38         {
    39             k=(k%N*n%N)%N;
    40         }
    41         n=n*n%N;
    42         m/=2;
    43     }
    44     return k;
    45 }
    油!油!you@
  • 相关阅读:
    Python学习笔记之操作yalm
    Python学习笔记之多线程
    Python学习笔记之网络编程
    Python学习笔记之面对象与错误处理
    Python学习笔记之装饰器
    Python学习笔记之内置模块
    Python学习笔记之函数与正则
    PAT甲级1049. Counting Ones
    PAT甲级1045. Favorite Color Stripe
    PAT甲级1034. Head of a Gang
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5342706.html
Copyright © 2011-2022 走看看