Time Limit: 2 second(s) | Memory Limit: 32 MB |
Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example σ(24) = 1+2+3+4+6+8+12+24=60. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer is
Then we can write,
For some n the value of σ(n) is odd and for others it is even. Given a value n, you will have to find how many integers from 1 to n have even value of σ.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 1012).
Output
For each case, print the case number and the result.
Sample Input |
Output for Sample Input |
4 3 10 100 1000 |
Case 1: 1 Case 2: 5 Case 3: 83 Case 4: 947 |
1 #include<stdio.h> 2 #include<algorithm> 3 #include<iostream> 4 #include<string.h> 5 #include<math.h> 6 using namespace std; 7 typedef long long LL; 8 int main(void) 9 { 10 int i,j,k,p,q; 11 LL ans; 12 scanf("%d",&k); 13 int s; 14 for(s=1; s<=k; s++) 15 { 16 scanf("%lld",&ans); 17 LL cnt=0; 18 for(j=1; j<=sqrt(1.0*ans); j++) 19 { 20 LL bns=(LL)j; 21 if(bns*bns<=ans) 22 { 23 cnt++; 24 } 25 if(2*bns*bns<=ans) 26 { 27 cnt++; 28 } 29 } 30 printf("Case %d: ",s); 31 printf("%lld ",ans-cnt); 32 } 33 return 0; 34 }
复杂度O(sqrt(n));