Leapin' Lizards
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2080 Accepted Submission(s): 857
Problem Description
Your
platoon of wandering lizards has entered a strange room in the
labyrinth you are exploring. As you are looking around for hidden
treasures, one of the rookies steps on an innocent-looking stone and the
room's floor suddenly disappears! Each lizard in your platoon is left
standing on a fragile-looking pillar, and a fire begins to rage below...
Leave no lizard behind! Get as many lizards as possible out of the
room, and report the number of casualties.
The pillars in the room are aligned as a grid, with each pillar one unit away from the pillars to its east, west, north and south. Pillars at the edge of the grid are one unit away from the edge of the room (safety). Not all pillars necessarily have a lizard. A lizard is able to leap onto any unoccupied pillar that is within d units of his current one. A lizard standing on a pillar within leaping distance of the edge of the room may always leap to safety... but there's a catch: each pillar becomes weakened after each jump, and will soon collapse and no longer be usable by other lizards. Leaping onto a pillar does not cause it to weaken or collapse; only leaping off of it causes it to weaken and eventually collapse. Only one lizard may be on a pillar at any given time.
The pillars in the room are aligned as a grid, with each pillar one unit away from the pillars to its east, west, north and south. Pillars at the edge of the grid are one unit away from the edge of the room (safety). Not all pillars necessarily have a lizard. A lizard is able to leap onto any unoccupied pillar that is within d units of his current one. A lizard standing on a pillar within leaping distance of the edge of the room may always leap to safety... but there's a catch: each pillar becomes weakened after each jump, and will soon collapse and no longer be usable by other lizards. Leaping onto a pillar does not cause it to weaken or collapse; only leaping off of it causes it to weaken and eventually collapse. Only one lizard may be on a pillar at any given time.
Input
The
input file will begin with a line containing a single integer
representing the number of test cases, which is at most 25. Each test
case will begin with a line containing a single positive integer n
representing the number of rows in the map, followed by a single
non-negative integer d representing the maximum leaping distance for the
lizards. Two maps will follow, each as a map of characters with one row
per line. The first map will contain a digit (0-3) in each position
representing the number of jumps the pillar in that position will
sustain before collapsing (0 means there is no pillar there). The second
map will follow, with an 'L' for every position where a lizard is on
the pillar and a '.' for every empty pillar. There will never be a
lizard on a position where there is no pillar.Each input map is
guaranteed to be a rectangle of size n x m, where 1 ≤ n ≤ 20 and 1 ≤ m ≤
20. The leaping distance is
always 1 ≤ d ≤ 3.
always 1 ≤ d ≤ 3.
Output
For
each input case, print a single line containing the number of lizards
that could not escape. The format should follow the samples provided
below.
思路:最大流,将每个点拆分成两个,一个为入流点一个为出流点,两点间建立流量为这个点处柱子的高度。
然后建立一个总输出点0,和总汇点,还有在两个距离不超过d的点之间建立流量为无穷的边,0和每个L的输入点建立流为1的边。最后跑下dinic。用所有的L-最大流即可。
1 #include<stdio.h> 2 #include<algorithm> 3 #include<stdlib.h> 4 #include<iostream> 5 #include<string.h> 6 #include<vector> 7 #include<queue> 8 using namespace std; 9 struct node 10 { 11 int to; 12 int cap; 13 int rev; 14 }; 15 char str[30][30]; 16 char str2[30][30]; 17 int id[30][30]; 18 int level[100000]; 19 vector<node>vec[100000]; 20 const int N=1e8; 21 int iter[100000]; 22 void add(int from,int to,int cap); 23 void bfs(int s); 24 int dfs(int s,int t,int f); 25 int max_flow(int s,int t); 26 int main(void) 27 { 28 int i,j,k; 29 scanf("%d",&k); 30 int s; 31 int p,q; 32 for(s=1; s<=k; s++) 33 { 34 scanf("%d %d ",&p,&q); 35 for(i=0; i<100000; i++) 36 vec[i].clear(); 37 for(i=0; i<p; i++) 38 { 39 scanf("%s",str[i]); 40 } 41 for(i=0; i<p; i++) 42 { 43 scanf("%s",str2[i]); 44 } 45 int l=strlen(str[0]); 46 int ans=1; 47 for(i=0; i<p; i++) 48 { 49 for(j=0; j<l; j++) 50 { 51 id[i][j]=ans++; 52 } 53 } 54 ans-=1; 55 int x,y; 56 for(i=0; i<p; i++) 57 { 58 for(j=0; j<l; j++) 59 { 60 if(str[i][j]>'0') 61 add(id[i][j],id[i][j]+ans,str[i][j]-'0'); 62 } 63 } 64 for(i=0; i<p; i++) 65 { 66 for(j=0; j<l; j++) 67 { 68 for(x=0; x<p; x++) 69 { 70 for(y=0; y<l; y++) 71 { 72 if(i!=x||j!=y) 73 { 74 if(abs(x-i)+abs(j-y)<=q) 75 { 76 add(id[i][j]+ans,id[x][y],N); 77 } 78 } 79 } 80 } 81 } 82 } 83 for(i=0; i<p; i++) 84 { 85 for(j=0; j<l; j++) 86 { 87 int cc=abs(i+1); 88 int dd=abs(p-i); 89 cc=min(cc,dd); 90 int kk=abs(j+1); 91 int vv=abs(l-j); 92 vv=min(kk,vv); 93 if((vv<=q||cc<=q)) 94 { 95 add(id[i][j]+ans,2*ans+1,N); 96 } 97 } 98 } 99 int fuck=0; 100 for(i=0; i<p; i++) 101 { 102 for(j=0; j<l; j++) 103 { 104 if(str2[i][j]=='L') 105 { 106 add(0,id[i][j],1); 107 fuck++; 108 } 109 } 110 } 111 int sum=max_flow(0,2*ans+1); 112 printf("Case #%d: ",s); 113 if(fuck-sum==1) 114 printf("%d lizard was left behind. ",fuck-sum); 115 else if(fuck-sum==0) printf("no lizard was left behind. "); 116 else printf("%d lizards were left behind. ",fuck-sum); 117 } 118 } 119 void add(int from,int to,int cap) 120 { 121 node nn; 122 nn.to=to; 123 nn.cap=cap; 124 nn.rev=vec[to].size(); 125 vec[from].push_back(nn); 126 nn.to=from; 127 nn.cap=0; 128 nn.rev=vec[from].size()-1; 129 vec[to].push_back(nn); 130 } 131 void bfs(int s) 132 { 133 queue<int>que; 134 memset(level,-1,sizeof(level)); 135 level[s]=0; 136 que.push(s); 137 while(!que.empty()) 138 { 139 int v=que.front(); 140 que.pop(); 141 int i; 142 for(i=0; i<vec[v].size(); i++) 143 { 144 node e=vec[v][i]; 145 if(level[e.to]==-1&&e.cap>0) 146 { 147 level[e.to]=level[v]+1; 148 que.push(e.to); 149 } 150 } 151 } 152 } 153 int dfs(int s,int t,int f) 154 { 155 if(s==t) 156 return f; 157 for(int &i=iter[s]; i<vec[s].size(); i++) 158 { 159 node &e=vec[s][i]; 160 if(level[e.to]>level[s]&&e.cap>0) 161 { 162 int r=dfs(e.to,t,min(e.cap,f)); 163 if(r>0) 164 { 165 e.cap-=r; 166 vec[e.to][e.rev].cap+=r; 167 return r; 168 } 169 } 170 } 171 return 0; 172 } 173 int max_flow(int s,int t) 174 { 175 int flow=0; 176 for(;;) 177 { 178 bfs(s); 179 if(level[t]<0)return flow; 180 memset(iter,0,sizeof(iter)); 181 int f; 182 while((f=dfs(s,t,N))>0) 183 { 184 flow+=f; 185 } 186 } 187 }