Anti-prime Sequences
Time Limit: 3000MS | Memory Limit: 30000K | |
Total Submissions: 3355 | Accepted: 1531 |
Description
Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For example, if n = 1 and m = 10, one such anti-prime sequence is 1,3,5,4,2,6,9,7,8,10. This is also the lexicographically first such sequence.
We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9.
We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9.
Input
Input
will consist of multiple input sets. Each set will consist of three
integers, n, m, and d on a single line. The values of n, m and d will
satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0
0 will indicate end of input and should not be processed.
Output
For
each input set, output a single line consisting of a comma-separated
list of integers forming a degree danti-prime sequence (do not insert
any spaces and do not split the output over multiple lines). In the case
where more than one anti-prime sequence exists, print the
lexicographically first one (i.e., output the one with the lowest first
value; in case of a tie, the lowest second value, etc.). In the case
where no anti-prime sequence exists, output
No anti-prime sequence exists.
No anti-prime sequence exists.
Sample Input
1 10 2 1 10 3 1 10 5 40 60 7 0 0 0
Sample Output
1,3,5,4,2,6,9,7,8,10 1,3,5,4,6,2,10,8,7,9 No anti-prime sequence exists. 40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
题意:在【2,d】长度的连续序列的和都要为合数。
思路:DFS。
1 #include<stdio.h> 2 #include<algorithm> 3 #include<iostream> 4 #include<stdlib.h> 5 #include<string.h> 6 #include<queue> 7 #include<stack> 8 #include<math.h> 9 using namespace std; 10 typedef long long LL; 11 bool prime[20000]= {0}; 12 int tt[10000]; 13 bool cm[1005]; 14 int ts=0; 15 bool check(int n,int m); 16 int dfs(int n,int m,int d,int kk,int pp); 17 int main(void) 18 { 19 int i,j,k; 20 for(i=2; i<=1000; i++) 21 { 22 if(!prime[i]) 23 { 24 for(j=i; (i*j)<=20000; j++) 25 { 26 prime[i*j]=true; 27 } 28 } 29 } 30 int n,m; 31 while(scanf("%d %d %d",&n,&m,&k),n!=0&&m!=0&&k!=0) 32 { 33 memset(cm,0,sizeof(cm)); 34 ts=0; 35 int uu=dfs(0,m-n+1,k,n,m); 36 if(uu) 37 { 38 printf("%d",tt[0]); 39 for(i=1; i<(m-n+1); i++) 40 { 41 printf(",%d",tt[i]); 42 } 43 printf(" "); 44 } 45 else printf("No anti-prime sequence exists. "); 46 } 47 } 48 bool check(int n,int m) 49 { 50 int i,j; 51 52 53 LL sum=tt[m]; 54 for(i=m-1; i>=max(n,0); i--) 55 { 56 sum+=tt[i]; 57 if(!prime[sum]) 58 return false; 59 } 60 return true; 61 } 62 int dfs(int n,int m,int d,int kk,int pp) 63 { 64 int i; 65 if(ts)return 1; 66 if(n==m) 67 { 68 69 bool cc=check(n-d,m-1); 70 if(!cc) 71 { 72 return 0; 73 } 74 ts=1; 75 return 1; 76 } 77 else 78 { 79 bool cc=check(n-d,n-1); 80 if(cc) 81 { 82 for(i=kk; i<=pp; i++) 83 { 84 if(ts)return 1; 85 if(!cm[i]) 86 { 87 tt[n]=i; 88 cm[i]=true; 89 int uu=dfs(n+1,m,d,kk,pp); 90 cm[i]=false; 91 if(uu)return 1; 92 } 93 } 94 } 95 else return 0; 96 } 97 return 0; 98 }