zoukankan      html  css  js  c++  java
  • DP? (hdu3944)

    DP?

    Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)
    Total Submission(s): 2871    Accepted Submission(s): 894


    Problem Description

    Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern as follows.
    C(n,0)=C(n,n)=1 (n ≥ 0)
    C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
    Write a program that calculates the minimum sum of numbers passed on a route that starts at the top and ends at row n, column k. Each step can go either straight down or diagonally down to the right like figure 2.
    As the answer may be very large, you only need to output the answer mod p which is a prime.
     
    Input
    Input to the problem will consists of series of up to 100000 data sets. For each data there is a line contains three integers n, k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is terminated by end-of-file.
     
    Output
    For every test case, you should output "Case #C: " first, where C indicates the case number and starts at 1.Then output the minimum sum mod p.
     
    Sample Input
    1 1 2 4 2 7
     
    Sample Output
    Case #1: 0 Case #2: 5
     
    Author
    phyxnj@UESTC
    思路:lucas定理;
    先打个小范围的表看一下,发现这个和杨辉三角一样是对称的;
    然后我们推一下,dp[i][j]=min(dp[i-1][j-1],dp[i-1][j])+ans[i][j];这个可以自己首推递归下,dp[i-1][j-1]是小于dp[i-1][j]的,所以dp[i][j]=dp[i-1][j-1]+ans[i][j];
    那么再递归处理dp[i-1][j-1];最后dp[i][j]可以化为dp[i][j]=ans[i-1][j-1]+ans[i-2][j-2]+ans[i-3][j-3]+...ans[i-k][0]+...ans[i-1-k][0]+...ans[0][0];那么最后的ans[d][0]这种等于1的项共有
    n-m+1项那么我们在里面拿一项和前面的合并,dp[i][j]=ans[i][j]+ans[i-1][j-1]+ans[i-2][j-2]+...ans[i-k+1][1]+ans[i-k+1][0]+n-m;
    dp[n][m]=ans[n+1][m]+n-m;所以前面的组合数用lucas求模,然后需要预处理对各个模的阶乘表。
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string.h>
     5 #include<stdlib.h>
     6 #include<queue>
     7 #include<map>
     8 #include<math.h>
     9 using namespace std;
    10 typedef long long LL;
    11 LL a[10005];
    12 bool prime[10005];
    13 int id[10005];
    14 int biao[2000][10005];
    15 LL quick(LL n,LL m,LL mod);
    16 LL lucas(LL n,LL m,LL mod);
    17 int main(void)
    18 {
    19         int i,j,k;
    20         LL n,m,mod;
    21         for(i=2; i<=1005; i++)
    22                 if(!prime[i])
    23                         for(j=i; (i*j)<=10005; j++)
    24                                 prime[i*j]=true;
    25         int tk=0;
    26         for(i=2; i<=10005; i++)
    27                 if(!prime[i])
    28                 {
    29                         id[i]=tk;
    30                         biao[tk][0]=1;
    31                         biao[tk][1]=1;
    32                         for(j=2; j<i; j++)
    33                         {
    34                                 biao[tk][j]=biao[tk][j-1]*j%i;
    35                         }
    36                         tk++;
    37                 }
    38         int __ca=0;
    39         while(scanf("%lld %lld %lld",&n,&m,&mod)!=EOF)
    40         {
    41                 __ca++; LL cc=n-m;
    42                 n+=1;
    43 
    44                 m=min(m,cc);
    45                 LL ask=lucas(m,n,mod);
    46                 ask=ask+(n-m-1)%mod;
    47                 ask%=mod;
    48                 printf("Case #%d: ",__ca);
    49                 printf("%lld
    ",ask);
    50         }
    51         return 0;
    52 }
    53 LL lucas(LL n,LL m,LL mod)
    54 {
    55         if(m==0)
    56         {
    57                 return 1;
    58         }
    59         else
    60         {
    61                 LL nn=n%mod;
    62                 LL mm=m%mod;
    63                 if(mm<nn)
    64                         return 0;
    65                 else
    66                 {
    67                         LL ni=biao[id[mod]][mm-nn]*biao[id[mod]][nn]%mod;
    68                         ni=biao[id[mod]][mm]*quick(ni,mod-2,mod)%mod;
    69                         return ni*lucas(n/mod,m/mod,mod);
    70                 }
    71         }
    72 }
    73 LL quick(LL n,LL m,LL mod)
    74 {
    75         LL ans=1;
    76         while(m)
    77         {
    78                 if(m&1)
    79                 {
    80                         ans=ans*n%mod;
    81                 }
    82                 n=n*n%mod;
    83                 m/=2;
    84         }
    85         return ans;
    86 }
    油!油!you@
  • 相关阅读:
    svn常用命令
    mysql5.6 sql_mode设置
    centos6.5 mysql5.6主从复制
    linux 挂载windows共享文件夹
    hadoop+hive+hbase+zookeeper安装
    Linux踢出登陆用户的正确姿势
    个人博客项目部署到腾讯云记录(私人记录)
    Python中的单例模式的几种实现方式和优化以及pyc文件解释(转)
    关于window.location.hash的理解及其应用(转)
    Django model反向关联名称的方法(转)
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5710237.html
Copyright © 2011-2022 走看看