zoukankan      html  css  js  c++  java
  • DP? (hdu3944)

    DP?

    Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)
    Total Submission(s): 2871    Accepted Submission(s): 894


    Problem Description

    Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern as follows.
    C(n,0)=C(n,n)=1 (n ≥ 0)
    C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
    Write a program that calculates the minimum sum of numbers passed on a route that starts at the top and ends at row n, column k. Each step can go either straight down or diagonally down to the right like figure 2.
    As the answer may be very large, you only need to output the answer mod p which is a prime.
     
    Input
    Input to the problem will consists of series of up to 100000 data sets. For each data there is a line contains three integers n, k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is terminated by end-of-file.
     
    Output
    For every test case, you should output "Case #C: " first, where C indicates the case number and starts at 1.Then output the minimum sum mod p.
     
    Sample Input
    1 1 2 4 2 7
     
    Sample Output
    Case #1: 0 Case #2: 5
     
    Author
    phyxnj@UESTC
    思路:lucas定理;
    先打个小范围的表看一下,发现这个和杨辉三角一样是对称的;
    然后我们推一下,dp[i][j]=min(dp[i-1][j-1],dp[i-1][j])+ans[i][j];这个可以自己首推递归下,dp[i-1][j-1]是小于dp[i-1][j]的,所以dp[i][j]=dp[i-1][j-1]+ans[i][j];
    那么再递归处理dp[i-1][j-1];最后dp[i][j]可以化为dp[i][j]=ans[i-1][j-1]+ans[i-2][j-2]+ans[i-3][j-3]+...ans[i-k][0]+...ans[i-1-k][0]+...ans[0][0];那么最后的ans[d][0]这种等于1的项共有
    n-m+1项那么我们在里面拿一项和前面的合并,dp[i][j]=ans[i][j]+ans[i-1][j-1]+ans[i-2][j-2]+...ans[i-k+1][1]+ans[i-k+1][0]+n-m;
    dp[n][m]=ans[n+1][m]+n-m;所以前面的组合数用lucas求模,然后需要预处理对各个模的阶乘表。
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string.h>
     5 #include<stdlib.h>
     6 #include<queue>
     7 #include<map>
     8 #include<math.h>
     9 using namespace std;
    10 typedef long long LL;
    11 LL a[10005];
    12 bool prime[10005];
    13 int id[10005];
    14 int biao[2000][10005];
    15 LL quick(LL n,LL m,LL mod);
    16 LL lucas(LL n,LL m,LL mod);
    17 int main(void)
    18 {
    19         int i,j,k;
    20         LL n,m,mod;
    21         for(i=2; i<=1005; i++)
    22                 if(!prime[i])
    23                         for(j=i; (i*j)<=10005; j++)
    24                                 prime[i*j]=true;
    25         int tk=0;
    26         for(i=2; i<=10005; i++)
    27                 if(!prime[i])
    28                 {
    29                         id[i]=tk;
    30                         biao[tk][0]=1;
    31                         biao[tk][1]=1;
    32                         for(j=2; j<i; j++)
    33                         {
    34                                 biao[tk][j]=biao[tk][j-1]*j%i;
    35                         }
    36                         tk++;
    37                 }
    38         int __ca=0;
    39         while(scanf("%lld %lld %lld",&n,&m,&mod)!=EOF)
    40         {
    41                 __ca++; LL cc=n-m;
    42                 n+=1;
    43 
    44                 m=min(m,cc);
    45                 LL ask=lucas(m,n,mod);
    46                 ask=ask+(n-m-1)%mod;
    47                 ask%=mod;
    48                 printf("Case #%d: ",__ca);
    49                 printf("%lld
    ",ask);
    50         }
    51         return 0;
    52 }
    53 LL lucas(LL n,LL m,LL mod)
    54 {
    55         if(m==0)
    56         {
    57                 return 1;
    58         }
    59         else
    60         {
    61                 LL nn=n%mod;
    62                 LL mm=m%mod;
    63                 if(mm<nn)
    64                         return 0;
    65                 else
    66                 {
    67                         LL ni=biao[id[mod]][mm-nn]*biao[id[mod]][nn]%mod;
    68                         ni=biao[id[mod]][mm]*quick(ni,mod-2,mod)%mod;
    69                         return ni*lucas(n/mod,m/mod,mod);
    70                 }
    71         }
    72 }
    73 LL quick(LL n,LL m,LL mod)
    74 {
    75         LL ans=1;
    76         while(m)
    77         {
    78                 if(m&1)
    79                 {
    80                         ans=ans*n%mod;
    81                 }
    82                 n=n*n%mod;
    83                 m/=2;
    84         }
    85         return ans;
    86 }
    油!油!you@
  • 相关阅读:
    模板实现查找算法
    指针笔试题
    【查找算法】基于比较的查找算法(顺序查找、对分查找、分块查找)
    flask动态路由
    flask对json的内置处理模块jsonify
    pyquery和etree两个模块的区别
    单元测试初试
    求数组中子数组的最大值
    C语言小程序之读取文本文件中单词的个数并打印出频率最高的10个
    电梯去哪儿
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5710237.html
Copyright © 2011-2022 走看看