zoukankan      html  css  js  c++  java
  • 1266

    1266 - Points in Rectangle
    Time Limit: 2 second(s) Memory Limit: 32 MB

    As the name says, this problem is about finding the number of points in a rectangle whose sides are parallel to axis. All the points and rectangles consist of 2D Cartesian co-ordinates. A point that lies in the boundary of a rectangle is considered inside.

    Input

    Input starts with an integer T (≤ 10), denoting the number of test cases.

    Each case starts with a line containing an integer q (1 ≤ q ≤ 30000) denoting the number of queries. Each query is either one of the following:

    1)      0 x y, meaning that you have got a new point whose co-ordinate is (x, y). But the restriction is that, if a point (x, y) is already listed, then this query has no effect.

    2)      1 x1 y1 x2 y2 meaning that you are given a rectangle whose lower left co-ordinate is (x1, y1) and upper-right corner is (x2, y2); your task is to find the number of points, given so far, that lie inside this rectangle. You can assume that (x1 < x2, y1 < y2).

    You can assume that the values of the co-ordinates lie between 0 and 1000 (inclusive).

    Output

    For each case, print the case number in a line first. Then for each query type (2), you have to answer the number of points that lie inside that rectangle. Print each of the results in separated lines.

    Sample Input

    Output for Sample Input

    1

    9

    0 1 1

    0 2 6

    1 1 1 6 6

    1 2 2 5 5

    0 5 5

    1 0 0 6 5

    0 3 3

    0 2 6

    1 2 1 10 10

    Case 1:

    2

    0

    2

    3

    Note

    Dataset is huge, use faster I/O methods.


    PROBLEM SETTER: JANE ALAM JAN
    思路:二维树状数组;
    模板题:
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<stdlib.h>
     5 #include<queue>
     6 #include<string.h>
     7 using namespace std;
     8  int bit[1005][1005];
     9 bool  flag[1005][1005];
    10 int lowbit(int x)
    11 {
    12         return x&(-x);
    13 }
    14 void add(int x1,int y1)
    15 {
    16         int i,j;
    17         for(i = x1; i <= 1001; i+=lowbit(i))
    18                 for(j = y1; j <= 1001; j+=lowbit(j))
    19                 {
    20                         bit[i][j]++;
    21                 }
    22 }
    23 int ask(int x1,int y1)
    24 {
    25         int i,j;
    26         int sum = 0;
    27         for(i = x1; i > 0; i-=lowbit(i))
    28                 for(j = y1; j > 0; j-=lowbit(j))
    29                 {
    30                         sum+=bit[i][j];
    31                 }
    32         return sum;
    33 }
    34 int main(void)
    35 {
    36         int T;
    37         scanf("%d",&T);
    38         int __ca = 0,q;
    39         while(T--)
    40         {
    41                 __ca++;
    42                 memset(bit,0,sizeof(bit));
    43                 memset(flag,0,sizeof(flag));
    44                 scanf("%d",&q);
    45                 printf("Case %d:
    ",__ca);
    46                 int val ;
    47                 int x,y,x1,y1;
    48                 while(q--)
    49                 {
    50                         scanf("%d",&val);
    51                         if(!val)
    52                         {
    53                                 scanf("%d %d",&x,&y);
    54                                 x+=1;
    55                                 y+=1;
    56                                 if(!flag[x][y])
    57                                 {
    58                                         add(x,y);
    59                                         flag[x][y]=true;
    60                                 }
    61                         }
    62                         else
    63                         {
    64                                 scanf("%d %d %d %d",&x,&y,&x1,&y1);
    65                                 x++;y++;x1++;y1++;
    66                                 int sum = ask(x1,y1);
    67                                 sum += ask(x-1,y-1);
    68                                 sum -= ask(x-1,y1);
    69                                 sum -= ask(x1,y-1);
    70                                 printf("%d
    ",sum);
    71                         }
    72                 }
    73         }
    74         return 0;
    75 }
    76  

    复杂度:n*log(n)^2;

    油!油!you@
  • 相关阅读:
    关于Excel无法打开,因为文件格式或文件扩展名无效的解决方法
    SpringBoot整合rabbitmq
    异步线程池的使用
    java1.8新特性之stream流式算法
    hashMap的底层实现
    redis底层设计(五)——内部运作机制
    redis底层设计(四)——功能的实现
    redis底层设计(三)——redis数据类型
    redis底层设计(二)——内存映射数据结构
    redis底层设计(一)——内部数据结构
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5890545.html
Copyright © 2011-2022 走看看