zoukankan      html  css  js  c++  java
  • 1248

    1248 - Dice (III)
    Time Limit: 1 second(s) Memory Limit: 32 MB

    Given a dice with n sides, you have to find the expected number of times you have to throw that dice to see all its faces at least once. Assume that the dice is fair, that means when you throw the dice, the probability of occurring any face is equal.

    For example, for a fair two sided coin, the result is 3. Because when you first throw the coin, you will definitely see a new face. If you throw the coin again, the chance of getting the opposite side is 0.5, and the chance of getting the same side is 0.5. So, the result is

    1 + (1 + 0.5 * (1 + 0.5 * ...))

    = 2 + 0.5 + 0.52 + 0.53 + ...

    = 2 + 1 = 3

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 105).

    Output

    For each case, print the case number and the expected number of times you have to throw the dice to see all its faces at least once. Errors less than 10-6 will be ignored.

    Sample Input

    Output for Sample Input

    5

    1

    2

    3

    6

    100

    Case 1: 1

    Case 2: 3

    Case 3: 5.5

    Case 4: 14.7

    Case 5: 518.7377517640


    Problem Setter: Jane Alam Jan
    几何分布的期望;
    投掷出第一个未出现的点数的概率为p1=n/n = 1。第二个未出现的点数第一次出现的概率为 p2=(n - 1) / n。第i个未出现的点数第一次出现的概率为pi=(n - (i-1)) / n。然后当我们取了第i个点,那么要去取第i+1个点,那么这个点的概率为pi=(n - (i)) / n,那么这时这个点取次数的期望就是满足几何分布的,那么这个点的期望求出来表示,要经过多少此取,才能让第i+1个点出现的期望,总的期望就是这n个点第一次出现的期望之和。
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<stdlib.h>
     5 #include<queue>
     6 #include<string.h>
     7 #include<map>
     8 #include<vector>
     9 using namespace std;
    10 typedef long long LL;
    11 int main(void)
    12 {
    13         int n;
    14         scanf("%d",&n);
    15         int __ca = 0;
    16         while(n--)
    17         {
    18                 __ca++;
    19                 int x;
    20                 scanf("%d",&x);
    21                 int i,j;
    22                 double sum = x;
    23                 double ac = 0;
    24                  for(i = 1;i <= x;i++)
    25                 {
    26                     ac = ac + 1.0/(double)i;
    27                 }//printf("%lf
    ",ac);
    28                 printf("Case %d: %.10f
    ",__ca,ac*sum);
    29         }
    30         return 0;
    31 }
    油!油!you@
  • 相关阅读:
    6种负载均衡算法
    Java中volatile关键字
    剑指offer练习
    linux系统查看IP地址,不显示IP地址或者只显示127.0.0.1
    Nginx负载均衡配置
    集群应用Session一致性实现的三种方案
    rabbitMQ学习
    JDK1.8在LINUX下安装步骤
    ecplise部署gradle web项目
    Kubernetes下的应用监控解决方案
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5901542.html
Copyright © 2011-2022 走看看