zoukankan      html  css  js  c++  java
  • Fence(poj1821)

    Fence
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 4705   Accepted: 1489

    Description

    A team of k (1 <= K <= 100) workers should paint a fence which contains N (1 <= N <= 16 000) planks numbered from 1 to N from left to right. Each worker i (1 <= i <= K) should sit in front of the plank Si and he may paint only a compact interval (this means that the planks from the interval should be consecutive). This interval should contain the Si plank. Also a worker should not paint more than Li planks and for each painted plank he should receive Pi $ (1 <= Pi <= 10 000). A plank should be painted by no more than one worker. All the numbers Si should be distinct. 

    Being the team's leader you want to determine for each worker the interval that he should paint, knowing that the total income should be maximal. The total income represents the sum of the workers personal income. 

    Write a program that determines the total maximal income obtained by the K workers. 

    Input

    The input contains: 
    Input 

    N K 
    L1 P1 S1 
    L2 P2 S2 
    ... 
    LK PK SK 

    Semnification 

    N -the number of the planks; K ? the number of the workers 
    Li -the maximal number of planks that can be painted by worker i 
    Pi -the sum received by worker i for a painted plank 
    Si -the plank in front of which sits the worker i 

    Output

    The output contains a single integer, the total maximal income.

    Sample Input

    8 4
    3 2 2
    3 2 3
    3 3 5
    1 1 7 
    

    Sample Output

    17

    Hint

    Explanation of the sample: 

    the worker 1 paints the interval [1, 2]; 

    the worker 2 paints the interval [3, 4]; 

    the worker 3 paints the interval [5, 7]; 

    the worker 4 does not paint any plank 
    思路:dp+单调队列;
    首先我们要对原来的点按顺序排,然后dp[i][j]表示前i个人喷漆到j个位置结束的最大值,那么转移方程是dp[i][j] = max(dp[i-1][j],dp[i-1][j-s]+s*ans.p);这样n^3肯定不行,然后方程可写为dp[i-1][k]+(j-k)*ans.p=dp[i-1][k]-k*ans.p+j*ans.p,因为第二层循环中的j是不变的,(max(0,j-ans.l)<=k<ans.s),那么ans.l定,ans.s定,当j增大时区间范围减小,然后单调队列维护下最大值即可。复杂度O(n*m);
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string.h>
     5 #include<stdlib.h>
     6 #include<queue>
     7 #include<stack>
     8 using namespace std;
     9 typedef long long LL;
    10 typedef struct node
    11 {
    12     int cost;
    13     int id;
    14     bool operator<(const node &cx)const
    15     {
    16         if(cx.cost == cost)return cx.id < id;
    17         else return cx.cost>cost;
    18     }
    19 } ak;
    20 typedef struct pp
    21 {
    22     int l,p,s;
    23 } ss;
    24 bool cmp(pp p,pp q)
    25 {
    26     return p.s<q.s;
    27 }
    28 priority_queue<ak>que;
    29 ss ans[105];
    30 int dp[105][16005];
    31 ak quq[2*16005];
    32 int main(void)
    33 {
    34     int n,m;
    35     while(scanf("%d %d",&n,&m)!=EOF)
    36     {
    37         int j;
    38         int i;
    39         int maxx = 0;
    40         for(i = 1; i <= m; i++)
    41             scanf("%d %d %d",&ans[i].l,&ans[i].p,&ans[i].s);
    42         sort(ans+1,ans+1+m,cmp);
    43         memset(dp,0,sizeof(dp));
    44         for(i = 1; i <= m; i++)
    45         {
    46             int head = 16001;
    47             int rail = 16000;
    48             for(j = 0; j < ans[i].s; j++)
    49             {
    50                 dp[i][j] = dp[i-1][j];
    51                 ak acc;
    52                 acc.cost = dp[i-1][j]-j*ans[i].p;
    53                 acc.id = j;
    54                 if(head>rail)
    55                     quq[--head] = acc;
    56                 else
    57                 {
    58                     ak cpp = quq[rail];
    59                     while(cpp.cost < acc.cost)
    60                     {
    61                         rail--;
    62                         if(rail<head)
    63                         {
    64                             break;
    65                         }
    66                         cpp = quq[rail];
    67                     }
    68                     quq[++rail] = acc;
    69                 }
    70                 maxx = max(maxx,dp[i][j]);
    71             }
    72             for(j = ans[i].s; j <= min(n,ans[i].l+ans[i].s-1); j++)
    73             {
    74                 dp[i][j] = max(dp[i-1][j],dp[i][j]);
    75                 int minn = max(0,j-ans[i].l);
    76                 while(head<=rail)
    77                 {
    78                     ak acc = quq[head];
    79                     if(acc.id < minn)
    80                     {
    81                         head++;
    82                     }
    83                     else
    84                     {
    85                         dp[i][j] = max(dp[i][j],acc.cost+j*ans[i].p);
    86                         break;
    87                     }
    88                 }
    89                 maxx = max(maxx,dp[i][j]);
    90             }
    91             for(j = min(n,ans[i].l+ans[i].s-1)+1; j <= n; j++)
    92             {
    93                 dp[i][j] = dp[i-1][j];
    94                 maxx = max(maxx,dp[i][j]);
    95             }}
    96                printf("%d
    ",maxx);
    97     }
    98     return 0;}
  • 相关阅读:
    Apollo,Python,Delphi与Oracle之间的神话关系
    Delphi语言获得生命的原因和过程
    cocos2d(x) HTML label ;CCHTML CCHTMLLabel
    不重启使XP环境变量生效
    对当下纷繁乱世的思考框架(核心与边缘,时间与成本)
    晚明一出,明朝不必再穿越了
    常用的Linux终端
    如何发布使用LGPL版Qt的商业软件
    如何制作一个类似Tiny Wings的游戏 Cocos2d-x 2.1.4
    文明之火熊熊燃烧,灼热乃至引燃了周边霉湿的柴草
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5936891.html
Copyright © 2011-2022 走看看