zoukankan      html  css  js  c++  java
  • D. Artsem and Saunders

    Artsem has a friend Saunders from University of Chicago. Saunders presented him with the following problem.

    Let [n] denote the set {1, ..., n}. We will also write f: [x] → [y] when a function f is defined in integer points 1, ..., x, and all its values are integers from 1 to y.

    Now then, you are given a function f: [n] → [n]. Your task is to find a positive integer m, and two functions g: [n] → [m], h: [m] → [n], such that g(h(x)) = x for all , and h(g(x)) = f(x) for all , or determine that finding these is impossible.

    Input

    The first line contains an integer n (1 ≤ n ≤ 105).

    The second line contains n space-separated integers — values f(1), ..., f(n) (1 ≤ f(i) ≤ n).

    Output

    If there is no answer, print one integer -1.

    Otherwise, on the first line print the number m (1 ≤ m ≤ 106). On the second line print n numbers g(1), ..., g(n). On the third line print m numbers h(1), ..., h(m).

    If there are several correct answers, you may output any of them. It is guaranteed that if a valid answer exists, then there is an answer satisfying the above restrictions.

    Examples
    Input
    3
    1 2 3
    Output
    3
    1 2 3
    1 2 3
    Input
    3
    2 2 2
    Output
    1
    1 1 1
    2
    Input
    2
    2 1
    Output
    -1
    思路:由h(g(x)) = f(x),假设f(x1) = f(x2);

    那么有h(g(x1)) = h(g(x2)),那么我们假设g(x1)!=g(x2),那么就有h中存在两个相等的数,那么g(h(g(x1))) = g(x1),g(h(g(x2))) = g(x2)
    就有个g(x1) = g(x2)所以假设不成立,那么h中的数都是不一样的,那么就为f中的不同种类数,m就确定了。
    于是确定h(x),那么h(x)有许多的排列,假设x1,x2,h(x1) = a,h(x2) = b,f(y1) = a,f(y2) = b;
    通过条件1求出g,h(g(a)) = f(a),h(g(b)) = f(b);-> g(a) = x1,g(b) = x2,那么有h(x1) = f(a),h(x2) = f(b);
    那么假设h(x1) = b,h(x2) = a,可以推得g(a) = x2,g(b) = x1,有h(x2) = f(a),h(x1) = f(b),总是可以的f(a)= a,f(b) = b;
    所以h的序列任意排序即可,然后求出g,在通过第二个条件验证即可。
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<queue>
     4 #include<stdlib.h>
     5 #include<iostream>
     6 #include<string.h>
     7 #include<set>
     8 #include<map>
     9 using namespace std;
    10 typedef long long LL;
    11 set<int>vec;
    12 set<int>::iterator it;
    13 int ans[1000006];
    14 int g[1000006];
    15 int h[1000006];
    16 map<int,int>my;
    17 int main(void)
    18 {
    19     int n;
    20     scanf("%d",&n);
    21     int cn = 0;
    22     for(int i = 1; i <= n; i++)
    23         scanf("%d",&ans[i]),vec.insert(ans[i]);
    24     for(it = vec.begin(); it!=vec.end(); it++)
    25     {
    26         h[++cn] = *it;
    27         my[*it] = cn;
    28         g[h[cn]] = cn;
    29     }
    30     int flag = 0;
    31     for(int i = 1; i <= n; i++)
    32     {
    33         if(g[i] == 0)
    34         {
    35             g[i] = my[ans[i]];
    36         }
    37         else if(h[g[i]]!=ans[i])
    38             flag = 1;
    39     }
    40     if(flag == 1)
    41         printf("-1
    ");
    42     else
    43     {
    44         printf("%d
    ",cn);
    45         printf("%d",g[1]);
    46         for(int i = 2; i <= n; i++)
    47             printf(" %d",g[i]);
    48         printf("
    ");
    49         printf("%d",h[1]);
    50         for(int i = 2; i <= cn; i++)
    51             printf(" %d",h[i]);
    52     }
    53     return 0;
    54 }


  • 相关阅读:
    由DBCursor的“can't switch cursor access methods”异常引发的思考
    在Java中使用元组类型的利器
    Linux命令行如何返回上一次的目录
    Linux下通过crontab命令来实现定时任务
    Spark任务踩到的坑
    Hadoop HDFS命令学习笔记
    Spark RDD学习笔记
    HBase的基本操作
    一张图5分钟熟悉MarkDown的基本语法
    C#跨线程操作控件的最简单实现探究
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/6400877.html
Copyright © 2011-2022 走看看