zoukankan      html  css  js  c++  java
  • OpenCV Haar AdaBoost源码改进据说是比EMCV快6倍

    <pre name="code" class="cpp">#include "Haar.h"
    #include "loadCascade.h"
    #include "Util.h"
    #include "stdio.h"
    #include "string.h"
    #include <math.h>
    #include <stdint.h>
    #include <c6x.h>
    
    /*******************Global************************************/
    HaarClassifierCascade *cascade ;
    //HidHaarClassifierCascade hid_cascade;
    //32bits cell Mat
    int        MatPool32[MaxMatNum][MAXROWS][MAXCOLS];
    //8bits cell 
    unsigned char  MatPool8[MaxMatNum][MAXROWS][MAXCOLS];
    
    //8bits*3 cell 
    unsigned char  ImgRGBPool8[MaxMatNum][RGBCHANNEL][MAXROWS][MAXCOLS];
    
    //64bits  cell 
    _int64     MatPool64[MaxMatNum][MAXROWS][MAXCOLS];
    
    //候选区域坐标节点并查集
    PTreeNode PTreeNodes[MAXPTREENODES];
    
    char HidCascade[MAXHIDCASCADE];
    
    //分类器检测结果区域序列
    Sequence result_seq;
    
    
    
    
    
    //==================================================================
    //函数名:  IsEqual
    //作者:    qiurenbo
    //日期:    2014-10-1
    //功能:    判断两个矩形是否邻接
    //输入参数:_r1  _r2 候选区域矩形      
    //返回值:  返回相似性(是否是邻接的矩形)
    //修改记录:
    //==================================================================
    int IsEqual( const void* _r1, const void* _r2)
    {
        const Rect* r1 = (const Rect*)_r1;
        const Rect* r2 = (const Rect*)_r2;
        int distance5x = r1->width ;//int distance = cvRound(r1->width*0.2);
        
        return r2->x*5 <= r1->x*5 + distance5x &&
            r2->x*5 >= r1->x*5 - distance5x &&
            r2->y*5 <= r1->y*5 + distance5x &&
            r2->y*5 >= r1->y*5 - distance5x &&
            r2->width*5 <= r1->width * 6 &&
            r2->width * 6 >= r1->width*5;
    }
    
    //==================================================================
    //函数名:  ReadFaceCascade
    //作者:    qiurenbo
    //日期:    2014-10-1
    //功能:    根据候选区域的相似性(IsEqual函数)建立并查集
    //输入参数:seq  候选目标区域序列      
    //返回值:  返回分类后的类别数 
    //修改记录:
    //==================================================================
    int SeqPartition( const Sequence* seq )
    {
        Sequence* result = 0;
        //CvMemStorage* temp_storage = 0;
        int class_idx = 0;
        
    
        memset(PTreeNodes, 0, MAXPTREENODES*sizeof(PTreeNode));
        
        int i, j;
       
    
    
        //建立以seq中元素为根节点的森林
        for( i = 0; i < seq->total; i++ )
            PTreeNodes[i].element = (char*)&seq->rectQueue[i];
    
        //遍历所有根节点
        for( i = 0; i < seq->total; i++ )
        {
            PTreeNode* node = &PTreeNodes[i];
            PTreeNode* root = node;
            //确保node中元素指针不为空
            if( !node->element )
                continue;
            
            //找到元素在树中的根结点
            while( root->parent )
                root = root->parent;
            
            for( j = 0; j < seq->total; j++ )
            {
                PTreeNode* node2 = &PTreeNodes[j];
                
                //确保1.node中元素指针不为空
                //    2.且不是同一个node结点
                //    3.且是相似区域
                // 若是相似区域,则合并元素
                if( node2->element && node2 != node &&
                    IsEqual( node->element, node2->element))
                {
                    PTreeNode* root2 = node2;
                    
                   //找到元素在树中的根结点
                    while( root2->parent )
                        root2 = root2->parent;
                    
                    //合并的前提是不在一颗树中
                    if( root2 != root )
                    {
                        //秩小的树归入秩大的树中
                        if( root->rank > root2->rank )
                            root2->parent = root;
                        //秩相等的时候才改变树的秩
                        else
                        {
                            root->parent = root2;
                            root2->rank += root->rank == root2->rank;
                            root = root2;
                        }
                        //assert( root->parent == 0 );
                        
                        // 路径压缩,子节点node2直接指向根节点
                        while( node2->parent )
                        {
                            PTreeNode* temp = node2;
                            node2 = node2->parent;
                            temp->parent = root;
                        }
                        
                        // 路径压缩,子节点node直接指向根节点
                        node2 = node;
                        while( node2->parent )
                        {
                            PTreeNode* temp = node2;
                            node2 = node2->parent;
                            temp->parent = root;
                        }
                    }
                }
            
            }
        }
    
    
        for( i = 0; i < seq->total; i++ )
        {
            PTreeNode* node = &PTreeNodes[i];
            int idx = -1;
            
            if( node->element )
            {
                while( node->parent )
                    node = node->parent;
                
                //计算有几棵并查树,巧妙地利用取反避免重复计算
                if( node->rank >= 0 )
                    node->rank = ~class_idx++;
                idx = ~node->rank;
            }
            
           
        }
    
        return class_idx;
    }
    
    
    //==================================================================
    //函数名:  ReadFaceCascade
    //作者:    qiurenbo
    //日期:    2014-09-30
    //功能:    读取Cascade文件
    //输入参数:void      
    //返回值:  void  
    //修改记录:
    //==================================================================
    void ReadFaceCascade()
    {
        int i;
        //load cascade
        cascade = (HaarClassifierCascade*)HaarClassifierCascade_face;
    
        //load stages
        int stage_size = StageClassifier_face[0];
        HaarStageClassifier *stages ;
        stages = (HaarStageClassifier *)(StageClassifier_face+1);
        
        //load classifier
        int classifier_size = Classifier_face[0];
        HaarClassifier *cls ;
        cls = (HaarClassifier*) (Classifier_face+1);
        
        int class_info_size = class_info[0];
        int * cls_info ;
        cls_info = (int*)(class_info+1);
    
        
        
        //link cascade with stages
        cascade->stage_classifier = stages;
        //link stages,classifiers
        int offset=0;
        int offset_t=(sizeof(HaarFeature)/sizeof(int));
        int offset_l=offset_t+1;
        int offset_r=offset_t+2;
        int offset_a=offset_t+3;
        int offset_total=0;
        for(i=0;i<stage_size;++i)
        {
            (stages+i)->classifier = (cls+offset);
            offset +=(stages+i)->count;
        }
        
        offset_total = 5+ (sizeof(HaarFeature)/sizeof(int));
        //link classifiers and haar_featrue;
        for(i=0;i<classifier_size;++i)
        {
            HaarClassifier *cs= cls+i;
        
            cs->haar_feature = (HaarFeature*)(cls_info+i*offset_total);
            cs->threshold = (int*)(cls_info+i*offset_total+offset_t);
            cs->left =(int*)(cls_info+i*offset_total+offset_l);
            cs->right=(int*)(cls_info+i*offset_total+offset_r);
            cs->alpha=(int*)(cls_info+i*offset_total+offset_a);
        
        }
    }
    //==================================================================
    //函数名:  IntegralImage
    //作者:    qiurenbo
    //日期:    2014-09-26
    //功能:    从矩阵池中获取rows * cols的矩阵 
    //输入参数:mat        矩阵结构体地址
    //            rows    待分配的行数
    //            cols    待分配的列数
    //            type    待分配的矩阵类型 
    //            matIndex 从矩阵池中分配的矩阵序列(手动指定..)      
    //返回值:  void  
    //修改记录:
    //==================================================================
    
    void GetMat(void* mat, int rows, int cols, int type, int matIndex)
    {
        switch(type)
        {
            case BITS8: 
                    ((Mat8*)mat)->rows = rows;
                    ((Mat8*)mat)->cols = cols;
                    ((Mat8*)mat)->mat8Ptr =  (Mat8Ptr)&MatPool8[matIndex];
                    break;
                
            case BITS32: 
                    ((Mat32*)mat)->rows = rows;
                    ((Mat32*)mat)->cols = cols;
                    ((Mat32*)mat)->mat32Ptr =  (Mat32Ptr)&MatPool32[matIndex];
                    break;
    
            case BITS64:
                    ((Mat64*)mat)->rows = rows;
                    ((Mat64*)mat)->cols = cols;
                    ((Mat64*)mat)->mat64Ptr =  (Mat64Ptr)&MatPool64[matIndex];
                    break;
        }
    }
    
    
    //==================================================================
    //函数名:  IntegralImage
    //作者:    qiurenbo
    //日期:    2014-09-26
    //功能:    计算目标检测区域的积分图
    //输入参数:src        待检测目标所在矩阵起始
    //            srcstep 待检测区域列数
    //            sum        积分图矩阵    (W+1)*(H+1)    
    //            sumstep 积分图矩阵列数    
    //            sqsum    平方和图矩阵 (W+1)*(H+1)    
    //            sqsumstep 平方和图矩阵列数
    //            size   待检测区域大小 W*H
    //          
    //          
    //返回值:  void  
    //修改记录:
    //==================================================================
    void IntegralImage(ImgPtr src, int srcstep,
                       Mat32Ptr sum, int sumstep,     
                       Mat64Ptr sqsum, int sqsumstep,
                       Size size)
    {
        int s = 0;
        _int64 sq = 0;
        //移动指针到积分图的下一行,第一行全为0
        sum += sumstep + 1;     
        sqsum += sqsumstep + 1; 
        
        //y代表相对于输入检测矩阵起始第几行
        for(int y = 0; y < size.height; y++, src += srcstep,       
            sum += sumstep, sqsum += sqsumstep )    
        {   
            //sum和sqsum为(W+1)*(H+1)大小矩阵,故将第一列置为0
            sum[-1] = 0;                                        
            sqsum[-1] = 0;                                      
            
            for(int x = 0 ; x < size.width; x++ )    
            {                                                   
                int it = src[x];                           
                int t = (it);   
                
                //查表计算平方
                _int64    tq =  CV_8TO16U_SQR(it);  
                //s代表行上的累加和
                s += t;  
                //sq代表行上的累加和
                sq += tq;                                       
                t = sum[x - sumstep] + s;                       
                tq = sqsum[x - sqsumstep] + sq;                 
                sum[x] = t;                                     
                sqsum[x] = (_int64)tq;                                  
            }                                                   
        }                        
    }
    
    //==================================================================
    //函数名:  Integral
    //作者:    qiurenbo
    //日期:    2014-09-26
    //功能:    计算目标检测区域的积分图
    //输入参数:image 图像
    //            sumImage 积分图指针
    //            sumSqImage 平方和图指针                 
    //返回值:  void  
    //修改记录:
    //==================================================================
    void Integral(Image* image, Mat32* sumImage, Mat64* sumSqImage)
    {
    
        //取保地址空间已经分配,从数组中
        if (image == NULL || sumImage == NULL || sumSqImage == NULL)
            return;
    
        Image*src    =        (Image*)image;
        Mat32 *sum     =        (Mat32*)sumImage;
        Mat64 *sqsum =        (Mat64*)sumSqImage;
       
        Size size;
        size.height = src->rows;
        size.width =  src->cols;
    
        IntegralImage(src->imgPtr, src->cols,
            sum->mat32Ptr, sum->cols,     
            sqsum->mat64Ptr, sqsum->cols,size);
        
    
    }
    //==================================================================
    //函数名:  AlignPtr
    //作者:    qiurenbo
    //日期:    2014-10-03
    //功能:    按algin字节对齐
    //输入参数:ptr 要对齐的指针   
    //            align 对齐的字节数           
    //返回值:  void*   
    //修改记录:
    //==================================================================
    void* AlignPtr( const void* ptr, int align)
    {
    
        return (void*)( ((unsigned int)ptr + align - 1) & ~(align-1) );
    } 
    //==================================================================
    //函数名:  CreateHidHaarClassifierCascade
    //作者:    qiurenbo
    //日期:    2014-09-28
    //功能:    创建隐式积分图加快计算速度
    //输入参数:cascade 级联分类器指针              
    //返回值:  static HidHaarClassifierCascade*   返回一个隐式级联分类器指针
    //修改记录:
    //==================================================================
    static HidHaarClassifierCascade*
    CreateHidHaarClassifierCascade(HaarClassifierCascade* cascade)
    {
    
    
    
        
        cascade->hid_cascade = (struct HidHaarClassifierCascade *)HidCascade;
        //分配栈空间
        HidHaarClassifierCascade* out = (struct HidHaarClassifierCascade *)HidCascade;
        const int icv_stage_threshold_bias = 419; //0.0001*(2^22)=419.4304
    
        HidHaarClassifier* haar_classifier_ptr;
        HidHaarTreeNode* haar_node_ptr;
        int i, j, l;
       
        int total_classifiers = 2135;
        int total_nodes = 0;
        
      
        int has_tilted_features = 0;
        int max_count = 0;
    
    
    
    
        /* 初始化HidCascade头 */
        out->count = cascade->count;
        out->stage_classifier = (HidHaarStageClassifier*)(out + 1);
        //out->stage_classifier = (HidHaarStageClassifier*)AlignPtr(out + 1, 4);
        //classifier起始地址
        haar_classifier_ptr = (HidHaarClassifier*)(out->stage_classifier + cascade->count);
        //haar_classifier_ptr = (HidHaarClassifier*)AlignPtr(out->stage_classifier + cascade->count, 4);
        //node起始地址
        //haar_node_ptr = (HidHaarTreeNode*)AlignPtr(haar_classifier_ptr + total_classifiers, 4);
        haar_node_ptr = (HidHaarTreeNode*)(haar_classifier_ptr + total_classifiers);
        out->is_stump_based = 1;
        out->is_tree = 0;
    
        // 用cascade初始化HidCascade
        for( i = 0; i < cascade->count; i++ )
        {
    
            //用cascades Stage初始化HidCascade的Stage
            HaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
            HidHaarStageClassifier* hid_stage_classifier = out->stage_classifier + i;
    
            hid_stage_classifier->count = stage_classifier->count;
            hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
            //hid_stage_classifier->classifier = (struct HidHaarClassifier *)&HidClassifiers[i];
             hid_stage_classifier->classifier = haar_classifier_ptr;
            //初始化为二特征,下面会根据真实的特征数至1或0(三特征)
            hid_stage_classifier->two_rects = 1;
            haar_classifier_ptr += stage_classifier->count;
    
    
            //Stage构成一颗退化的二叉树(单分支),每个结点最多只有一个孩子
            hid_stage_classifier->parent = (stage_classifier->parent == -1)
                ? NULL : out->stage_classifier + stage_classifier->parent;
            hid_stage_classifier->next = (stage_classifier->next == -1)
                ? NULL :  out->stage_classifier + stage_classifier->next;
            hid_stage_classifier->child = (stage_classifier->child == -1)
                ? NULL : out->stage_classifier + stage_classifier->child ;
            
            //判断该stage是否为树状结构(多分枝)
            out->is_tree |= hid_stage_classifier->next != NULL;
    
    
            //赋值classifer属性
            for( j = 0; j < stage_classifier->count; j++ )
            {
                HaarClassifier* classifier = stage_classifier->classifier + j;
                HidHaarClassifier* hid_classifier = hid_stage_classifier->classifier + j;
                int node_count = classifier->count;
                
                int* alpha_ptr = (int*)(haar_node_ptr + node_count);
    
                hid_classifier->count = node_count;
                hid_classifier->node = haar_node_ptr;
                hid_classifier->alpha = alpha_ptr;
               
                //赋值node属性
                for( l = 0; l < node_count; l++ )
                {
                    HidHaarTreeNode* node =  hid_classifier->node + l;
                    HaarFeature* feature = classifier->haar_feature + l;
                    memset( node, -1, sizeof(*node) );
                    node->threshold = classifier->threshold[l];
                    node->left = classifier->left[l];
                    node->right = classifier->right[l];
                    
                    //对特征数目进行判断,若是三特征,则至two_rects为0
                    if( (feature->rect[2].weight) == 0 ||
                        feature->rect[2].r.width == 0 ||
                        feature->rect[2].r.height == 0 )
                        memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
                    else
                        hid_stage_classifier->two_rects = 0;
                }
    
                //赋值alpha
                memcpy( hid_classifier->alpha, classifier->alpha, (node_count+1)*sizeof(hid_classifier->alpha[0]));
                haar_node_ptr = (HidHaarTreeNode*)(alpha_ptr+node_count + 1);
                    
    
                //判断cascade中的分类器是否是树桩分类器,只有根结点的决策树
                out->is_stump_based &= node_count == 1;
            }
        }
    
    
        //cascade->hid_cascade = out;
        //assert( (char*)haar_node_ptr - (char*)out <= datasize );
    
       
    
    
    
        return out;
    }
    
    //==================================================================
    //函数名:  SetImagesForHaarClassifierCascade
    //作者:    qiurenbo
    //日期:    2014-09-29
    //功能:    根据尺度调整Haar特征的大小和权重
    //输入参数:cascade 级联分类器指针 
    //            sum     积分图
    //            sqsum   平方和积分图
    //            scale32x 尺度             
    //返回值:  无
    //修改记录:
    //==================================================================
    void SetImagesForHaarClassifierCascade(HaarClassifierCascade* _cascade, Mat32* sum, Mat64* sqsum, int scale32x)
    {
    
    
    
      
        HidHaarClassifierCascade* hidCascade;
        int coi0 = 0, coi1 = 0;
        int i;
        Rect equ_rect;
        int weight_scale;
        HaarFeature* feature;
        HidHaarFeature* hidfeature;
        int sum0 = 0, area0 = 0;
        Rect r[3];
        Rect tr;
        int correction_ratio;
    
    
        //根据尺度获取窗口大小
        _cascade->scale32x = scale32x;
        _cascade->real_window_size.width = (_cascade->orig_window_size.width * scale32x + 16)>>5 ;
        _cascade->real_window_size.height = (_cascade->orig_window_size.height * scale32x +16) >> 5;
    
    
        //设置隐式级联分类器的积分图
        hidCascade = _cascade->hid_cascade;
        hidCascade->sum = sum;
        hidCascade->sqsum = sqsum;
    
        //根据尺度设置积分图起始矩阵的位置
        equ_rect.x = equ_rect.y = (scale32x+16)>>5;    
        equ_rect.width = ((_cascade->orig_window_size.width-2)*scale32x + 16 ) >> 5;   //+0.5是为了四舍五入
        equ_rect.height = ((_cascade->orig_window_size.height-2)*scale32x + 16 ) >> 5;
        weight_scale = equ_rect.width*equ_rect.height;
        hidCascade->window_area = weight_scale; //矩形面积
        
        //获取积分图上起始矩阵四个像素的坐标
        hidCascade->p0 = sum->mat32Ptr + (equ_rect.y) * sum->cols+ equ_rect.x;
        hidCascade->p1 = sum->mat32Ptr + (equ_rect.y) * sum->cols + equ_rect.x + equ_rect.width;
        hidCascade->p2 = sum->mat32Ptr + (equ_rect.y + equ_rect.height) * sum->cols + equ_rect.x;
        hidCascade->p3 = sum->mat32Ptr + (equ_rect.y + equ_rect.height) * sum->cols + equ_rect.x + equ_rect.width;
    
        //获取平方和积分图上起始矩阵四个像素的坐标
        hidCascade->pq0 = sqsum->mat64Ptr + (equ_rect.y) * sqsum->cols+ equ_rect.x;
        hidCascade->pq1 = sqsum->mat64Ptr + (equ_rect.y) * sqsum->cols+ equ_rect.x + equ_rect.width;
        hidCascade->pq2 = sqsum->mat64Ptr + (equ_rect.y + equ_rect.height) * sqsum->cols+ equ_rect.x;
        hidCascade->pq3 = sqsum->mat64Ptr + (equ_rect.y + equ_rect.height) * sqsum->cols+ equ_rect.x + equ_rect.width;
    
        //遍历每个Classifer所使用的特征,对它们进行尺度放大,并将改变的值赋给HidCascade,隐式级联分类器
        for( i = 0; i < hidCascade->count; i++ )
        {
            int j, k, l;
            for( j = 0; j < hidCascade->stage_classifier[i].count; j++ )
            {
                for( l = 0; l < hidCascade->stage_classifier[i].classifier[j].count; l++ )
                {
                    feature = &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
    
                       hidfeature = &hidCascade->stage_classifier[i].classifier[j].node[l].feature;
                    sum0 = 0;
                    area0 = 0;
                    
                    
             
                    for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
                    {
                        if( !hidfeature->rect[k].p0 )
                            break;
                        
                        r[k] = feature->rect[k].r;
                    
                        
                        
                        //左上角坐标和矩阵长宽都按尺度放大
                        tr.x = (r[k].x * scale32x + 16) >> 5;
                        tr.width = (r[k].width * scale32x + 16) >> 5;
                        tr.y = ( r[k].y * scale32x + 16 ) >> 5;
                        tr.height = ( r[k].height * scale32x +16 ) >> 5;
                        
                        
                        correction_ratio = weight_scale;
                        
                        //设置矩阵四个顶点在积分图中的位置(为了计算特征方便)
                        hidfeature->rect[k].p0 = sum->mat32Ptr + tr.y * sum->cols +  tr.x;
                        hidfeature->rect[k].p1 = sum->mat32Ptr + tr.y * sum->cols +  tr.x + tr.width; 
                        hidfeature->rect[k].p2 = sum->mat32Ptr + (tr.y + tr.height) *sum->cols +  tr.x; 
                        hidfeature->rect[k].p3 = sum->mat32Ptr + (tr.y + tr.height) *sum->cols +  tr.x + tr.width;
                        
                        //rect[1] = weight/area, 左移22位是为了避免浮点计算,将权值/检测窗口面积(不断扩大),降低权值
                        hidfeature->rect[k].weight = ((feature->rect[k].weight)<< NODE_THRESHOLD_SHIFT)/(correction_ratio);
                        
                        if( k == 0 )
                            area0 = tr.width * tr.height;
                       else
                            sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
                  
                    }
                     //rect[0].weight ,权重和特征矩形面积成反比
                     hidfeature->rect[0].weight = (int)(-sum0/area0);
                        
                } /* l */
            } /* j */
        }
        
    };
    
    uint64_t block1 = 0;
    //uint64_t block2 = 0;
    //==================================================================
    //函数名:  RunHaarClassifierCascade
    //作者:    qiurenbo
    //日期:    2014-09-30
    //功能:    在指定窗口范围计算特征
    //输入参数:_cascade    级联分类器指针 
    //            pt            检测窗口左上角坐标
    //            start_stage 起始stage下标   
    //返回值:  <=0            未检测到目标或参数有问题
    //            1            成功检测到目标
    //修改记录:
    //====================================================================
    int RunHaarClassifierCascade( HaarClassifierCascade* _cascade, Point& pt, int start_stage )
    {
                               
        int result = -1;
    
    
        int p_offset, pq_offset;
        int i, j;
        _int64 rectsum, variance_factor;
        int variance_norm_factor;
        HidHaarClassifier* classifier;
        HidHaarTreeNode* node;
        int sum, t, a, b;
        int stage_sum;
    
    /*    uint64_t start_time, end_time, overhead, cyclecountSet=0, cyclecountRun=0;
         //In the initialization portion of the code:
        TSCL = 0; //enable TSC
        start_time = _itoll(TSCH, TSCL);
        end_time = _itoll(TSCH, TSCL);
        overhead = end_time-start_time; //Calculating the overhead of the method.*/
        HidHaarClassifierCascade* hidCascade;
    
        if (_cascade == NULL)
            return -1;
      
    
        hidCascade = _cascade->hid_cascade;
        if( !hidCascade )
            return -1;
        
    
        //确保矩形的有效性,并防止计算窗口出边界
        if( pt.x < 0 || pt.y < 0 ||
            pt.x + _cascade->real_window_size.width >= hidCascade->sum->cols-2 ||
            pt.y + _cascade->real_window_size.height >= hidCascade->sum->rows-2 )
            return -1;
    
    
        //计算特征点在积分图中的偏移,相当于移动窗口
        p_offset = pt.y * (hidCascade->sum->cols) + pt.x;
        pq_offset = pt.y * (hidCascade->sqsum->cols) + pt.x;
    
    
        //计算移动后整个窗口的特征值
        rectsum = calc_sum(*hidCascade,p_offset);//*cascade->inv_window_area;
        variance_factor = hidCascade->pq0[pq_offset] - hidCascade->pq1[pq_offset] -
                               hidCascade->pq2[pq_offset] + hidCascade->pq3[pq_offset];
         variance_factor = (variance_factor - ((rectsum*rectsum*windowArea[hidCascade->window_area-324])>>16))*windowArea[hidCascade->window_area-324]>>16;
        //variance_norm_factor = int(sqrt(float(variance_factor))+0.5f);//qmath
        variance_norm_factor = shortSqrtTable[variance_factor];
    
        if( variance_norm_factor < 0 )
            variance_norm_factor = 1;
    
        //计算每个classifier的用到的特征区域的特征值
    
        for( i = start_stage; i < hidCascade->count; i++ )
        //for( i = start_stage; i < hidCascade->count; i++ )
        {
             stage_sum = 0;
            
        
            node = hidCascade->stage_classifier[i].classifier->node;
            classifier = hidCascade->stage_classifier[i].classifier;
            //if( hidCascade->stage_classifier[i].two_rects )
            //{
            for( j = 0; j < hidCascade->stage_classifier[i].count; j++ )
            {
                //start_time = _itoll(TSCH, TSCL);
                //classifier = hidCascade->stage_classifier[i].classifier + j;
                
                //start_time = _itoll(TSCH, TSCL);
                t = node->threshold*variance_norm_factor >> 10;
                //end_time = _itoll(TSCH, TSCL);
            //    block1 += end_time - start_time - overhead;
                
                //start_time = _itoll(TSCH, TSCL);
                //计算Haar特征    
                sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight >> 10;
                sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight >> 10;
            
            
                //两特征和三特征分开处理
                if( node->feature.rect[2].p0 )
                    sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight >> 10;
    
                //end_time = _itoll(TSCH, TSCL);
                //block1 += end_time - start_time - overhead;
            //
                //a = classifier->alpha[0];
                //b = classifier->alpha[1];
                //start_time = _itoll(TSCH, TSCL);
                stage_sum += sum < t ? classifier->alpha[0] : classifier->alpha[1];
                //    end_time = _itoll(TSCH, TSCL);
                //    block2 += end_time - start_time - overhead
                node = (HidHaarTreeNode*)((char*)(node) + 80);
                classifier++;
            }
            
            if( stage_sum < hidCascade->stage_classifier[i].threshold )
            {
                
                return -i;
                
            }
        }
        
       //QueryPerformanceCounter(&t2);
       //printf("FeatureDetectTime:%fms
    ",(t2.QuadPart - t1.QuadPart)*1000.0/tc.QuadPart);
    
      
    
        return 1;
    }
    
    //==================================================================
    //函数名:  HaarDetectObjects
    //作者:    qiurenbo
    //日期:    2014-09-30
    //功能:    在指定图片中查找目标
    //输入参数: _img                图片指针        
    //            cascade                级联分类器指针 
    //            start_stage            起始stage下标 
    //            scale_factor32x        窗口变化尺度倍数 /32
    //            min_neighbors        最小临界目标(min_neighbors个以上的候选目标的区域才是最后的目标区域)
    //            minSize                目标最小的大小
    //返回值:  <=0                    未检测到目标或参数有问题
    //            1                    成功检测到目标
    //修改记录:
    //====================================================================
    void HaarDetectObjects(Image* _img,
                        HaarClassifierCascade* cascade,   //训练好的级联分类器
                        char* storage, int scale_factor32x,
                        int min_neighbors, int flags, Size minSize)
    {
        
        
        //第一次分类用到的最大stage
        //第二次分类用到的起始stage
        int split_stage = 2;
    
       // ImgPtr stub, *img =  _img;
        Mat32        sum ;
        Mat64        sqsum;
        Image        tmp;
    
        //检测区域候选队列
        Sequence    seq;
        
        //结果候选恿?
        Sequence    seq2;
        
        //并查集合并序列
        Sequence comps;
    
        Rect r1;
        PTreeNode* node;
        int r1_neighbor;
        int j, flag = 1;
        Rect r2 ;
        int r2_neighbor;
        int distance;//cvRound( r2.rect.width * 0.2 );
        memset(&seq, 0, sizeof(Sequence));
        memset(&comps, 0, sizeof(Sequence));
        memset(&seq2, 0, sizeof(Sequence));
        memset(&result_seq, 0, sizeof(result_seq));
    
        int i;
        
    
        int factor32x;
        int npass = 2;
    
        if( !cascade )
           return ;
    
    
        //获取积分图和平方和积分图的矩阵
        GetMat(&sum , _img->rows + 1, _img->cols + 1, BITS32, 0);
        GetMat(&sqsum, _img->rows + 1, _img->cols + 1, BITS64, 0);
        GetMat(&tmp, _img->rows, _img->cols, BITS8, 1);
    
        //若不存在隐式积分图(用于加速计算),则创建一个
         if( !cascade->hid_cascade )
            CreateHidHaarClassifierCascade(cascade);
    
    
        //计算积分图
        Integral(_img, &sum, &sqsum);
    
        int count = 0;
        int count2 = 0;
        // In the variable declaration portion of the code:
        /*uint64_t start_time, end_time, overhead, cyclecountSet=0, cyclecountRun=0;
        // In the initialization portion of the code:
        TSCL = 0; //enable TSC
        start_time = _itoll(TSCH, TSCL);
        end_time = _itoll(TSCH, TSCL);
        overhead = end_time-start_time; //Calculating the overhead of the method.*/
    
    
        //不断调整窗口尺度,直到到达图像边缘(_img->cols-10) ||(_img->rows - 10)
        //并且确保尺度小于3倍(96)
        for( factor32x = 32; factor32x*cascade->orig_window_size.width < (_img->cols - 10)<<5 &&
            factor32x*cascade->orig_window_size.height < (_img->rows - 10)<<5
            &&factor32x<96;
        factor32x = (factor32x*scale_factor32x+16)>>5 )
        {
            
            const int ystep32x = MAX(64, factor32x);
    
            //调整搜索窗口尺度
            Size win_size;
            win_size.height = (cascade->orig_window_size.height * factor32x + 16)>>5;
            win_size.width = (cascade->orig_window_size.width * factor32x + 16 )>>5;
            
           //pass指扫描次数,stage_offset指第二次扫描时从第几个stage开始
            int pass, stage_offset = 0;
            
            //确保搜索窗口在尺度放大后仍然在图像中
            int stop_height =  ( ((_img->rows - win_size.height)<<5)+ (ystep32x>>1) ) / ystep32x;
            
            //确保搜索窗口大于目标的最小尺寸
            if( win_size.width < minSize.width || win_size.height < minSize.height )
                continue;
            //QueryPerformanceFrequency(&tc);
            //QueryPerformanceCounter(&t1);
            //根据尺度设置隐式级联分类器中的特征和权重,并设置这些特征在积分图中的位置,以加速运算
            
            // Code to be profiled
            //start_time = _itoll(TSCH, TSCL);
               SetImagesForHaarClassifierCascade(cascade, &sum, &sqsum, factor32x );
            //end_time = _itoll(TSCH, TSCL);
            //cyclecountSet = end_time-start_time-overhead;
            //QueryPerformanceCounter(&t2);
            //printf("SetImageFeatureRunTime:%fms
    ",(t2.QuadPart - t1.QuadPart)*1000.0/tc.QuadPart);
    
    
            //设置粗检测所使用的起始分类器
            cascade->hid_cascade->count = split_stage;
        
            
            //用检测窗口扫描两遍图像:
            //第一遍通过级联两个stage粗略定位目标大致区域,对候选区域进行标定(利用tmp矩阵)
            //第二遍对标定的候选区域进行完整筛选,将候选区域放置到队列中
            for( pass = 0; pass < npass; pass++ )
            {
    
                for( int _iy = 0; _iy < stop_height; _iy++ )
                {    
                    //检测窗口纵坐标步长为2,保持不变
                    int iy = (_iy*ystep32x+16)>>5;
                    int _ix, _xstep = 1;
                    
                    //stop_width是指_ix迭代的上限,_ix还要*ystep32x才是真正的窗口坐标
                    int stop_width =( ((_img->cols - win_size.width)<<5) +ystep32x/2) / ystep32x;
                    unsigned char* mask_row = tmp.imgPtr + tmp.cols* iy;
                    
                    
                    for( _ix = 0; _ix < stop_width; _ix += _xstep )
                    {
                        
                        //检测窗口横坐标按步长为4开始移动,若没有检测到目标,则改变下一次步长为2
                        int ix = (_ix*ystep32x+16)>>5; // it really should be ystep
                    
                        //当前检测窗口左上角坐标
                        Point pt;
                        pt.x = ix;
                        pt.y = iy;
    
                        //粗略检测
                        if( pass == 0 )
                        {
                            
                            int result = 0;
                            _xstep = 2;
                        
                            //start_time = _itoll(TSCH, TSCL);
                            result = RunHaarClassifierCascade( cascade, pt, 0 );
                            //end_time = _itoll(TSCH, TSCL);
                            //cyclecountRun += end_time-start_time-overhead;
                            if( result > 0 )
                            {
                                if( pass < npass - 1 )
                                    mask_row[ix] = 1;
                            
                            }
                            //没有检测到改变步长为2(看ix的值)
                            if( result < 0 )
                                _xstep = 1;
                        }
                        //第二次检测先前粗定位的坐标
                        else if( mask_row[ix] )
                        {
                            //start_time = _itoll(TSCH, TSCL);
                            int result = RunHaarClassifierCascade(cascade, pt, stage_offset);
                        //    end_time = _itoll(TSCH, TSCL);
                        //    cyclecountRun += end_time-start_time-overhead;
                            
                            //count2++;
                            //int result = 0;
                            if( result > 0 )
                            {
                                seq.rectQueue[seq.tail].height = win_size.height;
                                seq.rectQueue[seq.tail].width = win_size.width;
                                seq.rectQueue[seq.tail].x = ix;
                                seq.rectQueue[seq.tail].y = iy;
                                seq.total++;
                                seq.tail++;
                            }
                            else
                                mask_row[ix] = 0;
                            
                    }
                }
    
            
            }
    
            //因为前两个stage在第一次检测的时候已经用过;
            //第二次检测的时候,从第3个stage开始进行完整的检测
            stage_offset = cascade->hid_cascade->count;
            cascade->hid_cascade->count = cascade->count;
            //cascade->hid_cascade->count = 15;
        }
     }
    
        //printf("The SetImage section took: %lld CPU cycles
    ", cyclecountSet);
    //    printf("The RunImage section took: %lld CPU cycles
    ", cyclecountRun);
    //    printf("The Block1 section took: %lld CPU cycles
    ", block1);
    //    printf("The Block2 section took: %lld CPU cycles
    ", block2);
    
        if( min_neighbors != 0 )
        {
        
            //将候选目标按相似度构成并查集
            //返回值代表并查集树的个数
            int ncomp = SeqPartition(&seq);
        
            
            
            //对相邻候选区域进行累加,为计算平均边界做准备
            for( i = 0; i < seq.total; i++ )
            {
                r1 = seq.rectQueue[i];
                node = &PTreeNodes[i];
                while(node->parent)
                    node = node->parent;
                int idx = (node - PTreeNodes);
               
                
                comps.neighbors[idx]++;
                
                comps.rectQueue[idx].x += r1.x;
                comps.rectQueue[idx].y += r1.y;
                comps.rectQueue[idx].width += r1.width;
                comps.rectQueue[idx].height += r1.height;
            }
    
            // 计算平均目标边界
            for( i = 0; i < seq.total; i++ )
            {
                int n = comps.neighbors[i];
    
                //只有满足最小临接的结果才是最终结果
                if( n >= min_neighbors )
                {
                    Rect* rect = &seq2.rectQueue[seq2.tail];
                    rect->x = (comps.rectQueue[i].x*2 + n)/(2*n);
                    rect->y = (comps.rectQueue[i].y*2 + n)/(2*n);
                    rect->width = (comps.rectQueue[i].width*2 + n)/(2*n);
                    rect->height = (comps.rectQueue[i].height*2 + n)/(2*n);
                    seq2.neighbors[seq2.tail] = comps.neighbors[i];
                    seq2.tail++;
                    seq2.total++;
                }
            }
    
    
            //从候选矩形中得到最大的矩形
            for( i = 0; i < seq2.total; i++ )
            {
                r1 = seq2.rectQueue[i];
                r1_neighbor = seq2.neighbors[i];
                flag = 1;
            
                for( j = 0; j < seq2.total; j++ )
                {
                    r2 = seq2.rectQueue[j];
                    r2_neighbor = seq2.neighbors[j];
                    distance = (r2.width *2+5)/10;//cvRound( r2.rect.width * 0.2 );
                    
                    if( i != j &&
                        r1.x >= r2.x - distance &&
                        r1.y >= r2.y - distance &&
                        r1.x + r1.width <= r2.x + r2.width + distance &&
                        r1.y + r1.height <= r2.y + r2.height + distance &&
                        (r2_neighbor > MAX( 3, r1_neighbor ) || r1_neighbor < 3) )
                    {
                        flag = 0;
                        break;
                    }
                }
                
                if( flag )
                {
                    result_seq.rectQueue[result_seq.tail] = r1;
                    result_seq.tail++;
                    result_seq.total++;
                    
                }
            }
            
        }
        
    }
    
    
    
    
    
    
    
    
    
    
    void DownSample(Image* pImage, int factor)
    {
        int i = 0;
        int j = 0;
        int counti = 0;
        int countj = 0;
    
        int step = pImage->cols / factor;
        for (i =0; i < pImage->rows; i+= factor)
        {
            countj++;
            for (j =0; j < pImage->cols; j += factor)
            {
                *(pImage->imgPtr + i*step/factor + j/factor) = *(pImage->imgPtr + i*pImage->cols + j);
                counti++;
            }
            counti = 0;
        }
        
        pImage->cols /= factor;
        pImage->rows /= factor;
    }
  • 相关阅读:
    nyoj 110 剑客决斗
    nyoj 16 矩形嵌套
    nyoj 17 单调递增最长子序列
    nyoj 37 回文字符串
    nyoj 44 子串和
    nyoj 36 最长公共子序列
    使用Broadcast实现android组件之间的通信 分类: android 学习笔记 2015-07-09 14:16 110人阅读 评论(0) 收藏
    ubuntu中安装samba 分类: linux 学习笔记 ubuntu 2015-07-07 16:14 46人阅读 评论(0) 收藏
    ubuntu中安装eclipse 分类: android ubuntu linux 学习笔记 2015-07-07 10:19 75人阅读 评论(0) 收藏
    ubuntu中安装jdk 分类: java 学习笔记 linux ubuntu 2015-07-06 17:49 74人阅读 评论(0) 收藏
  • 原文地址:https://www.cnblogs.com/zzuyczhang/p/4356305.html
Copyright © 2011-2022 走看看