zoukankan      html  css  js  c++  java
  • PAT甲级——A1021 Deepest Root

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

    Output Specification:

    For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print Error: K componentswhere K is the number of connected components in the graph.

    Sample Input 1:

    5
    1 2
    1 3
    1 4
    2 5
    

    Sample Output 1:

    3
    4
    5
    

    Sample Input 2:

    5
    1 3
    1 4
    2 5
    3 4
    

    Sample Output 2:

    Error: 2 components



     1 #include <iostream>
     2 #include <vector>
     3 #include<set>
     4 using namespace std;
     5 vector<vector<int>>G;
     6 int N, maxH = 0;
     7 bool visit[10010];
     8 set<int>res;
     9 vector<int>temp;
    10 
    11 void DFS(int node, int H)
    12 {
    13     if (H > maxH)
    14     {
    15         temp.clear();
    16         temp.push_back(node);//更新新的根节点
    17         maxH = H;
    18     }
    19     else if (H == maxH)
    20         temp.push_back(node);//相同的最优解
    21     visit[node] = true;
    22     for (int i = 0; i < G[node].size(); ++i)
    23         if (visit[G[node][i]] == false)
    24             DFS(G[node][i], H + 1);
    25 }
    26 
    27 int main()
    28 {
    29     int a, b, s1 = 0, cnt = 0;
    30     cin >> N;
    31     G.resize(N+1);
    32     for (int i = 1; i < N; ++i)
    33     {
    34         cin >> a >> b;
    35         G[a].push_back(b);
    36         G[b].push_back(a);
    37     }
    38     for (int i = 1; i <= N; ++i)
    39     {
    40         if (visit[i] == false)//开始深度搜索遍历,如果是一个联通区域,则只会执行一次
    41         {
    42             DFS(i, 1);
    43             if (i == 1)
    44             {
    45                 if (temp.size() != 0)
    46                     s1 = temp[0];
    47                 for (int j = 0; j < temp.size(); ++j)
    48                     res.insert(temp[j]);
    49             }
    50             cnt++;//计算集合数
    51         }        
    52     }
    53     if (cnt != 1)
    54         printf("Error: %d components
    ", cnt);
    55     else
    56     {
    57         temp.clear();
    58         maxH = 0;
    59         fill(visit, visit + N + 1, false);
    60         DFS(s1, 1);
    61         for (int j = 0; j < temp.size(); ++j)
    62             res.insert(temp[j]);
    63         for (auto r : res)
    64             cout << r << endl;
    65     }
    66     return 0;
    67 }
  • 相关阅读:
    c# 框架学习(nop )总结-------删除功能
    c# 框架学习(nop )总结-------编辑功能
    约束
    索引
    受限操作的变通解决方案
    删除数据表
    修改已有数据表
    定义外键
    定义主键
    定义默认值
  • 原文地址:https://www.cnblogs.com/zzw1024/p/11230397.html
Copyright © 2011-2022 走看看