zoukankan      html  css  js  c++  java
  • PAT甲级——A1053 Path of Equal Weight

    Given a non-empty tree with root R, and with weight Wi​​ assigned to each tree node Ti​​. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

    Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 0, the number of nodes in a tree, M (<), the number of non-leaf nodes, and 0, the given weight number. The next line contains N positive numbers where Wi​​ (<) corresponds to the tree node Ti​​. Then M lines follow, each in the format:

    ID K ID[1] ID[2] ... ID[K]
    

    where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.

    Output Specification:

    For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

    Note: sequence { is said to be greater than sequence { if there exists 1 such that Ai​​=Bi​​ for ,, and Ak+1​​>Bk+1​​.

    Sample Input:

    20 9 24
    10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
    00 4 01 02 03 04
    02 1 05
    04 2 06 07
    03 3 11 12 13
    06 1 09
    07 2 08 10
    16 1 15
    13 3 14 16 17
    17 2 18 19
    

    Sample Output:

    10 5 2 7
    10 4 10
    10 3 3 6 2
    10 3 3 6 2

    深度遍历
     1 #include <iostream>
     2 #include <vector>
     3 #include <algorithm>
     4 using namespace std;
     5 struct Node
     6 {
     7     int val;
     8     vector<int>child;
     9 }node[101];
    10 int N, M, S;
    11 int path[101];
    12 void DFS(int head, int numNode, int sum)
    13 {
    14     if (sum > S)
    15         return;
    16     if (sum == S)
    17     {
    18         if (node[head].child.size() != 0)//不是叶子节点
    19             return;
    20         for (int i = 0; i < numNode; ++i)
    21             cout << node[path[i]].val << (i < numNode - 1 ? " " : "");
    22         cout << endl;
    23         return;
    24     }
    25     for (int i = 0; i < node[head].child.size(); ++i)
    26     {
    27         path[numNode] = node[head].child[i];
    28         DFS(node[head].child[i], numNode + 1, sum + node[node[head].child[i]].val);
    29     }
    30 }
    31 int main()
    32 {
    33     cin >> N >> M >> S;
    34     for (int i = 0; i < N; ++i)
    35         cin >> node[i].val;
    36     int a, b, k;
    37     for (int i = 0; i < M; ++i)
    38     {
    39         cin >> a >> k;
    40         for (int j = 0; j < k; ++j)
    41         {
    42             cin >> b;
    43             node[a].child.push_back(b);
    44         }
    45         sort(node[a].child.begin(), node[a].child.end(),
    46             [](int a, int b) {return node[a].val > node[b].val; });
    47     }
    48     path[0] = 0;
    49     DFS(0, 1, node[0].val);
    50     return 0;
    51 }
  • 相关阅读:
    错误
    分页查询
    异步请求jquery
    深入理解C/C++ [Deep C (and C++)]
    C语言经典算法100例(三)
    《Python》 计算机基础
    Python程序员的进化史
    以前没有写笔记的习惯,现在慢慢的发现及时总结是多么的重要。 这一篇文章主要关于java多线程一些常见的疑惑点。因为讲解多线程的书籍和文章已经很多了,所以我也不好意思多说,嘻嘻嘻、大家可以去参考一些那些书籍。我这个文章主要关于实际的一些问题。同时也算是我以后复习的资料吧,。还请大家多多指教。 同时希望多结交一些技术上的朋友。谢谢。
    快速读入函数
    一元二次方程公式
  • 原文地址:https://www.cnblogs.com/zzw1024/p/11285643.html
Copyright © 2011-2022 走看看