zoukankan      html  css  js  c++  java
  • PAT甲级——A1094 The Largest Generation

    A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation. Your task is to find the generation with the largest population.

    Input Specification:

    Each input file contains one test case. Each case starts with two positive integers N (<) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<) which is the number of family members who have children. Then M lines follow, each contains the information of a family member in the following format:

    ID K ID[1] ID[2] ... ID[K]
    

    where ID is a two-digit number representing a family member, K (>) is the number of his/her children, followed by a sequence of two-digit ID's of his/her children. For the sake of simplicity, let us fix the root ID to be 01. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print in one line the largest population number and the level of the corresponding generation. It is assumed that such a generation is unique, and the root level is defined to be 1.

    Sample Input:

    23 13
    21 1 23
    01 4 03 02 04 05
    03 3 06 07 08
    06 2 12 13
    13 1 21
    08 2 15 16
    02 2 09 10
    11 2 19 20
    17 1 22
    05 1 11
    07 1 14
    09 1 17
    10 1 18
    

    Sample Output:

    9 4


     1 #include <iostream>
     2 #include <queue>
     3 #include <vector>
     4 using namespace std;
     5 int N, M, maxN = 1, resL = 1, root = 1, level[105] = { 0 }, manN[105] = { 0 };
     6 vector<int>man[105];
     7 void BFS()
     8 {
     9     queue<int>q;
    10     q.push(root);
    11     level[root] = 1;
    12     manN[level[root]]++;
    13     while (!q.empty())
    14     {
    15         root = q.front();
    16         q.pop();
    17         int temp = 0;
    18         for (auto v : man[root])
    19         {
    20             level[v] = level[root] + 1;
    21             manN[level[v]]++;//记录每一层的人数
    22             if (man[v].size() > 0)
    23                 q.push(v);
    24         }
    25     }    
    26 }
    27 
    28 void DFS(int s,int l)
    29 {
    30     manN[l]++;//l层的人数
    31     for (auto v : man[s])
    32         DFS(v, l + 1);
    33 }
    34 
    35 int main()
    36 {
    37     cin >> N >> M;
    38     for (int i = 0; i < M; ++i)
    39     {
    40         int a, b, k;
    41         cin >> a >> k;
    42         for (int j = 0; j < k; ++j)
    43         {
    44             cin >> b;
    45             man[a].push_back(b);
    46         }
    47     }
    48     //BFS();
    49     DFS(1, 1);
    50     for (int i = 1; i <= N; ++i)
    51     {
    52         if (maxN < manN[i])
    53         {
    54             maxN = manN[i];
    55             resL = i;
    56         }
    57     }    
    58     cout << maxN << " " << resL << endl;
    59     return 0;
    60 }
  • 相关阅读:
    设计模式复习-状态模式
    设计模式复习-观察者模式
    设计模式复习-建造者模式
    设计模式复习-外观模式
    推荐算法-协同过滤
    设计模式复习-模板方法模式
    设计模式复习-原型模式
    设计模式复习-代理模式
    神经网络与机器学习 笔记—泛化和交叉验证
    神经网络与机器学习 笔记—改善反向传播的性能试探法
  • 原文地址:https://www.cnblogs.com/zzw1024/p/11350268.html
Copyright © 2011-2022 走看看